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ABSTRACT

The particular problem with which the research was concerned

was the development of a technique to discriminate between coughs

and other audible phenomena which originate in a hospital environment.

Pattern recognition provided such a technique. Experimental data was

available in the form of audio tape recordings.

Implementation of a Bayes categorization decision requires

knowledge of the underlying conditional joint probability density

functions of the measures which typify the patterns to be recognized.

An adaptive pattern classifier model was piesented which circumvented

the difficulty of estimating these functions. The model is generally

applicable to the two-class case in which the patterns to be classified

consist of sequential segments of data known to have oiiginated from

the same class. The model took the form of a layered machine. The

first stage was a minimum distance classifier with respect to point sets

while the second stage utilizd the first stage binwaxy valued outputs to

implement a Bayes decision.

The featuro extraction and measure selecuoi, problems3 were

examined experimentally. Featuto caloulatiorn algorithms were devel.-

-|I ~.. .. . ........_-IV~l J~l <
oped whi'ra.- Oa U YUriULCiLLy atiJIJLICUIDLL: tO ti iy-li . . IY. . .- . Iilu

effectiveness of an algorithm for selection of a set of candidate measmues

was verified.E ii
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Experimental results indicated that, for the particular data with

which the research was concerned, an assumption of Markoff-t dependency

between sequential first stage decisions of the pattern classifier was

warranted. A pattern classifier which was based on this assumption

rcLassified 97.9% of the patterns presented to its input correctly.
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CHAPTER I

INTRODUCTION

A group at The University of Texas Southwestern Medical School in

Dallas, Texas is engaged in research in the general area of respiratory

diseases. One parameter of importance in their studies is the number of

Stimes that a patient coughs during a given time interval. The primary ob-

jective of the research outlined in this report is to devo1-p 'ique

which may be mechanized, either as special purpose circuitry to operate

in a real-time environment or as a generl purpose computer program, to

obtain this parameter.

The results may find additional application in pharmaceutical

evaluation. Experience indicates that self-evaluation of cough activity

by the patient is subjectiva to a pronounced degree. In the evaluation

of a d,-ug proposed as a cough alleviating agent, an objective method of

evaluation of the results of administration of the drug is necessary.

Yor the purposcs ol this investigation audible pheunomacu which -

occur in the hospital environment, but which are not coughs, will be

*i

Research in progress under the supervision oi Dr. R. G. Loudon,
Department of Internal Medicine, The University of Texas Southwestern
Medical School supported by a grant from the Committee for Research
on Tobacco and Health of the American Medical Association Education
and Research Foundation.
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referred to as artifacts A preliminaiy attempt by peisornel at Southwestern

Medical School to identify coughs by means of an empircally adjusted

filter and voice controlled relay were unsuccessful When adjusted for

actuation by coughs, the system also responds to many artifacts. This

indicated that more powerful classifying techniques would be required.

The purpose of the outlined iosearch was to develop a means for

discriminating between coughs and artifacts. Pattern recognition peo-

vidcs such a technique.

During recent years a good deal of effort has been directed toward

the study cf adpative pattern recognizers. These studies fall into two

broad categories, The bulk of the literatuie in the field consists of

mathematical studies indicating that a given procedure is optimal, or

converges to an optimal procedure for a specified constraint under a

given set of presumptions regarding underlying probability density

functions. The second approach that is taken is to apply pattern re-

cognition techniques to a set of data originating from a particular

experiment for which the underlying probability functions are unknown

or cannot be appioximated by a computationally managable analytical

expression and for which optimality cannot therefore be shown. Th2-

research outlined in this investigation falls into the latter category.

The basics of pattern recognition are outlined in Chapter 2 of the

report with emphasis placed on those portions of the theory that

-
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bear on the particular pattern recognition machine selected for the descriLed i

research. Data acquisition techniques and processing used to acquire the

measures utilized in ctecognitjon process ;•nd the basis on which tho

particular nmaures chosen were selected are outlinud in Chapter 3. The

mach no chosen to implemient the decision process is described in Chapter 4.

Experimental results are prcse:,t..,: in Chapter 5.

A
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CfMbPTER 11

GENERAL IIAT1.:-N RECOGNITION MODEL

2 .1 Basic Model

A gonc-al revie-w of Perth n-jnt PortiOns! of po-ttern recognition theory

are presented Ill thiS chi-IAptr oh thre report. The notation employed is,

for the most part, that used 1)y Nil I sar

A pattern classifier has as an input a seut of ordeied (fur owi pur-

poses, real) numnbers gle-ane:-d froin anl experiment. These- nullbfers will be

reei 6d oa me-asures6 and quanititAtively describe arr evenit. It will. bel

convenient to visualize a se-t uI d mueasuresas poinit in d--dirnensional

Euclidian sp..ace L T hits SpdJCe will bu iueferred to as ' Idtte1-ri space'

1hc rectanigular uo-orchnatc.-, inl the point Cire the real nurabor S YX

x .The vector X cxtenld~irg from thle origin, to the point (x 1 . . x d

wilt also be Used, to leprelseritt the pattern - X will be useci to des1ginate

uoth, the point and the(. vuctor . For comrputational purposus it will bc

cc~sderd a oluiinmatrix.

Tlrc outpul of thre patterin des ,,sifiur is, a decision, as to which of

R classes the evont described by the mec.asures belongs.ý. P > 2 . Thu

patter n recognizer, thoji, 1, i a device which n1cips the points of E 1intu

the ca tuyur y rurrr bolr S I, 2 , . R.. I Prus urlng irr Jo hrt s ill Lr VVwliih irrap

-into differenvt categories,, occ~upy disjoint regions in E ,oneo mray Visualize

'2



a partitioning of the space by suifaces arranged so that they separate the

point sets bellonging to the different catecgnries. These uice called decisionl

surfaces. if the, point sets are not disjoint, decision surfaces may still be

1placcd in accordance with someo predetormined critcria .

A pattern classifier iL; 'adaptive-" if it ha- the capability of miodify-

irug its per-!formalnCe (repositioning the- decision SLUrtdeS) inl ac;-cord~an1Ce with

meaasules presea.ted to its Input. The process of mi-odification of the perfoi-

mnance of the tnachinre is lorimcd ' carnfing'' while the ac~t of aiding this

learning is caillcd 'tro rnincj'. A set of daita, cýhos~n CA:; typical , used to

accomplish the tiaining is called' a 'tralining set"

hemanner in whidh tramirig ~ is'ý coricirctod Y IVLS riSU to two Iroc6

ciAsuifica tion-S of' lar ni rig cul le-d "Iear iii nyWith ka t"eir''rd'I cam ruin

without u toachire . L!ar ni ny Wr t0Lt aj teacher ijiplie-s that the- machine

mud ifices its per [orimo ne( WI the c eIr ici t in s i~l uc U:i ; to theCi asIsS 1rrernber-l

S hip Of thu tr:llain I; it .g do1t In larning with a teacheri the- tr uc- nicmbersh ip

of the ilIL riputnia s ur US is; kilO Wi a pr~ior

Yur tirefome type,- of rIjachiirue , trainling~ ruray take Ulc tirro)ugiroot

thrc w'urkirrj C~ych 2(- klf 112, rrracblu-~ Ill thelatter Iu Icase, trallining is U0one

~i ](-r to the(- use: oif tin rral irea c~f loslr .C- The type of larhiolriri w~ir

which tlhl s Irw'or r i LS crr' oU1t ;,'s erngwith a echr

'liedcc sir srf cu prvio-us iy, desciribed nra y her irrpli citiy dl-inned

bjy a set-. of funictions-, Colita unrigl~ R rnncrrulcr s , DeAlria g (X) , x ( (....
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as scalar, single-valued functions of the pattern X with the property that:

g9 (XJ >g.(X) i, j=1, 2 ...... R
S i/ (2-1)

for all X ecateqory i.

These functions are called "discriminant functions. Presuming

that the functions are continuous at the boundaries, it is seen that the

surface separating contiguous regions i and j is defined by:

- g.(X) = 0 (2-2)

Disctiminant functions provide a means for convenient imple-

mientetion of pattern classification. For a pattern X which is to be

classified as belonging to one of R classes, the R discriminant functions

are calculated and the pattern is assigned to the categoly for which the

associated disczirninant function has the largest value.

A special case of particular interest is that where P = 2. In this

case the partition of pattern space into the two regions is called a dichotomy.

The associated discriminant functions may be combined to yield:

g(__X >0 = X C class 1

g(2<) < 0 = X c class 2

= 0 - undefined ox arbitrary classification

Discriminant functions may be selected in a variety of ways do-

pemnding pifinarily upon the extunt of a priori knowledge of the patterns to

be classified. As; previously indicated, the nrwthod employed in the described

research utilizes training -
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2.3 Training

Training methods have been broadly grouped into two categories--

parametric and non-parametric.

The criteria for differentution between these two typos of training

10
are not consistent among all zesearchers in the field. Nilsson , for

example, classifies as parametric any training which assumes that the

patterns to be categorized are known a priori to be characterized by a

12
set of parameters, some of which may be unknown. Sebestyen ,On the

other hand, reserves the parametric labtel for patterns originating from a

random process with an underlying probability distribution function of

known form which is described by a set of parameters, some of which

may be unknown and which are themselves random variables. This latter

definition is an extension of that encountered in estimation theory.

In either case, training consists of computing estimates of the

unknown parameters.

An important example of non-parametric pattern classification is

that where the pattern space is deterministic in nature.

For the purpose of this report, training procedures will he

labeled as pzobabilistic or non -probabilistic depending upon the as sump-

tions madeas to the nature of the patt)ern space. In some cases the line

will not be cleaily drawn.



2 .4 Machine' Structure

2. 4. 1 Statistical Decision Theory

If thc pattern space is piobabilistic and the underlying probability

density functions an-d ai priori probability of occurrences of the vArious

classos are known, a decision criterion mray be derived which is Optimal

under a given constraint.

Dofinle:

COA/) cost of deciding c i when in
actualityX2 ~j

p =/) conditional probability that X j
given that X has occurred.

(2-4)
R

L (iG) Zc (~ipjŽ)=conditionil average loss,-

for the decision X c e
defined a priori.

It is to be noted that X is a vector. pj/ýX) wili thereforEý take thle

form of a cunditiondl joint probability:

p 0 /ýX) p 0/x X, x2 . . . x)(-5

A decision which mi~nimiizes the above conditionul average loss is

Called optimumn aid a machinec which implormsnts such a decision is, called

a Bayes machine.

Exaniiining cquaition (2-4), it is9 seeni that in order to der ive an

optimium decision a Set of Costs MuSt beo a:ýS~gnied which wCeight the re-C

lative- imnpe tCrnce Of th`e different errors in classification, in addition, the

a po~sturiori probabilities p(j/ýX) j 1 , 2 ,., R mast bu kniown. This
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latter requirement is almost never accomplished in practice and would be

difficult to estimate directly from experimental observations. Bayes'

theorem, however, allows the calculation of the a posteriori probabilities

in terms of estimable quantities:

![p(j/_X) (2-6)J)(J
S- p(X_) (2-6)

p(/j) is called the "likelihood" of j with respect to X. Substituting (2-6)

into (2-4):

:- R
Lx(0) = ( c(i/i)p(A/j)p() (2-7)

X pXs) 1=1 Vi

It is seen that l/pUX is a common term for all j. Minimization of

(2-7) is equivalent to minimization of (2-8):

-t (j) = Z c(//j)p p(j) (2-8)_ j=]

Equation (2-8) takes a form particularly amenable to calculation if

the costs of incorrect decisions are made equal while the cost of a correct

decision is set at zero:

" /i) 10 -n -(2- N

where 6.. is the Kronecker delta function.
i]

Substitution of (2-9) into (2-8) yields:

R
t (i) = F p(Xj)p(j) - p(JIi)pA) (21x j=] (2-10)

= p(Y) - p(-/i)pli)
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Minimization of (2-10) over alfl i, i- 1, 2 . R implies maximiza-

tion of p(0/i)p()1, i = 1, 2 . R. The discriminant functions for the l(

categories would therefore be the quantities p(§i)p(i), Y = R, 2...,

and the decision made would be in accordance with discriminant criteria

outlined in section 2.2. For this special loss function, called a symmetrical

loss function, the decision criterion has been given the name "Ideal Observer"

criterion in decision theory. It can be shown that this decision rule

minimizes the probability of erroneous classification.

In the event that the a priori probabilities p(i) , i = 1, 2 ...... R are

unknown and are therefore taken as being equally probable, the discriminant

function is of the form g.(X) = p(Yi) and the criterion is known as the

"Maximum Likelihood" criterion in decision theory. This criterion implies

that X originates from the category for which its occurrence is most prob-

able.

1'or the probabilistic decision criteria outlined, training consists

of estimating the various probabilities. Since X is a vector, the prob-

abilities p(-&/i) aie joint conditional probabilities and must be estimated

for all points in pattern space. This is a formidable task if the dimension -

ality of X is large unless some simplifying assumptions are made. A common

asoumption that is made is that the underlying probability density functions

,Lu GLIU.S-Iafl, 1P WHIIIJL U00 trciiing cojisi sts of estimating the unknown

mean and covajiauce matrices of the density functions. This line of attack



will not be pursued since the measures employed do not exhibit Gaussian

Sproperties and any analytical calculations employing this assumption would

be simply a mathematical exercise.

A brief summary of the probabilistic pattern recognition model for

the s'nmmetrical loss function is in order at this point. The input to the

pattern classifier is a set of measures which is represented as a vector

dX in E Training consists of estimating the associated likelihoods and

a priori probabilities for all points in E for categories i 1, 2, .

PR. The discriminant function for category i is gi(Q) = p(\/i)p(i). Classi-

f'cation of a vector X of unknown class membership is accomplished by

11Sevaluating g (X) for i = 1, 2, R and assigning Xý to the category for

which the associated g(X) is largest. Decision surfaces are defined by

the relationshps gi(2); i, j = 1, 2, . R... -- ij.

2 .4. 2 Linear Discriminants

A class of discriminant functions with a particularly simple physical

implementation is the linear discriminant function:

d
g.(X) E w x iw i1, 2 ...... R

j=l j i,d 1 (2-11)

W i , d+ 1

For the special case of R = 2, the relationship of equation (2-3)

applies. Substituting (2-11) irto (2-3) yields:

g(X) = "W_ _X + w -WX w
I 1,,11 2 2 d

(212)
=W-X + w d~l
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d
It is noted that the relationship W - X = 0 defines a hyperplane in E

which passes through the origin, W- X-+ wdl - 0 defines a hyperplane with

the distance to the origin dependent upon IŽ I and Wd+ lI

It will be convenient at this point to defiiie an augmented vector

X (x , x 2 . . . . .. x 6 , 1). Equation (2-12) then takes the form:

g(= W. X' (2-13)

d4 1
It is to be noted that, although X and W are vectors in E

equation (2-13) set equal to zero defines a dichotornizing hyperplane in

d
E . A pattern set for which a hyperplane exists such that all points

belonging to category I are on one side of the hyperplane and all points

belonging to category 2 are on the opposite side of the hyperplane is said

to be linearly separable. Given such a training set, training consists of

finding a W which satisfies the following relationship:

g(X) = W > K > 0 for all X e class I
(2-14)

< 0 for all X c class 2

A device capahle of phvs'cally implenimonting equation (2-14) is

the threshold logic unit (TLU). The TLU has d inputs which are weighted

by multiplying each input i)y a constant. The weighted inputs are then

summed and fed into a threshold device, if the summed input is greater

than a pre-set bias level, the output of the th.eshold device is a high

level; if the summed weighted inputs are below the bias level, the output

of the threshold device is a low level. For our purposes, the high level
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output corresponds to a category 1 membership decision while the low level

corresponds to a category 2 membership decision. The inputs are the d

measures of the unaugmented pattern and the weights correspond to the first

d components of W_. The bias level is associated with w 1

An example of a circuit which comprises a TLU is a resistive summing

network feeding a high gain amplifier driven into saturation.

Summarizing the properties of a TLU, the dichotomizing surface in

dE is a hyperplane which has an orientation given by the weights w 1, w2

W d with a position proportional to Wd+1 The distance from the

hyperplane to an arbitrary pattern X (unaugmented) is proportional to the

value of g(X).

2.4.3 Piecewise Linear Machines

Another concept which will be of importance in the outlined research

is that of a piecewise linear machine. Minimum distance classifiers with

respect to point sets constitute a sub-class of piecewise linear machines

and will be used for illustrative purposes.

Suppose that it has beon determined t.at the patterns to be C-lasbled

cluster (are "close to") about some predetermined set of prototype points.

In the discussion which follows X will be unagumented. Consider the

special case of R categories, each associated with a single point P., 1 = 1,
S RD. o decisionr csifiction of given pattern

X is to assign X to that class i for which the distance between X and the
0
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P. is less than the distance between X and any othei P. Equivalently, one
10 -

may compare the squared distances.

The squared Euclidian distance between points X and P, is given by:

(x -P.) 2 = (x - _(x -P) (2-15)1)

_ fl-i
-. . . .P " - -.. P

It is seen that a choice of the minimium squared distance is equivalent

to ;e selection of the maximum:

QX_ P. - 1/2 P.- P. (2-17)
-- n

Comparing equation (2-17) with equation (2-11), it is seen that:

Wij =pi i ,2. . .Ip, 2. d

W -1/2 P.. P.
i,d+-1 --

and the decision criterion is as previously outlined.

Suppose that, rather than a single point typifying a class, L.1

prototype points are associated with class i, i = 1, 2 ..... R. We may

define the R discriminant functions:

0)
Si = max [q. (X)]

=max [P(J). X -1/2 P. 0)'P(] (2-19)
1 -2 1 L.

j=1,2....... L.
1

'=1,2....... R

The g (j)is called a subsidiary discriminant function and is seen to be of the form of

equation (2-17) which is linear in X. Since each of the g.(j is a piecewise

linear function of X they are called piecewise linear discriminant functions,

II



The decision surfa,.e ,.ch they describe arc suctions al hyporplanes. It

Sis noted that for the particular constraints imposed that the decision regions

described are convex.

2.4.4 Layered Machines

ItO
It Las been shown0 that for the case of P= 2, a special class of

circuits called layered machines implemn-nt a piecewise linear machine.

A layered machine is a network of TLUs organized in layers so that

the inputs to each bank of TLIs are the outputs ol the preceeding bank, with

the exception of the first bank, whose inputs are the paUttern to be cldssified.

The last bank consists of a single TLU.

2.5 General Model Summary

This chapter of this paper has reviewed those topics in pattern

recognition theory which have a direct relationi to tne particular pattern

classifier which was implemented. The specific pattc-n ciassifier used in

the research is described in Chapter 5.



CHAP~TER 111

DATA ACCUISITION AND PLATURE CALCULATION

3.1 Irntroduction

A decision as to what to measure must be made early in an applied

pattern recognition progream. The type2 of feature utilized will, of ne-cessity,

vary depcor~ding upon the particular application. For tha case- of cough

catecgorization, the physiological. model of the cough reflex would be

expected to indicate candidate featuiace.;. This physielfogical modeli is

presented In this c~hap~te-r of t'his report and is followed by a descriplion

of d~ata acquisition meithods and an )utlinu of the algorithms used for

feature calculation.

3. 1 Physiological Considerations

3. 1 .1 The Respiratory 'aeclrunisnm

Air ente-rs the r -spi~ru.tory system vi- the oral or nasal cavities

which) opon into the pharynx. The phaiynx separates into the trachea and

the esophagus d'rectly above thc larynx. At the Point of division, food is

separated from air, food being diverted to the esophaigus, by the closure of

the epiglottis, a flap which clo--s over the opening of the trache-a when '
food touches theý pharynx. When the e-piylo~ttis is. rnot I.Yc)Lkingj the open-

ing to the trachea t!,a tower resp;jirdtory tract pre-sents les-s resistance toI
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the flow of air than the path through the esophagus. V.,ntilation is thus

provided to tha lungs.

The larynx is located at theý top of the tiachea. Thc vocal colds

are *the portion of thc larynx that produce sound. These cords are two

smaIl vanes located onl either side of the air passagewaiy. The vanies

Meet at an angla at the back of the- larynx. As the, muscles of the

larynx arc-: contracted, closura of tha vanes starts at thc- point of in-

torsection and work~s its way to the base of the triaigIle thay form. During

phonation they essential ly close oil the trachea . Air forced through the

closed vanes sets uip a lateral vibration which modulate~s the air stiaream

at audible frequen-cies. The fr-equency of vibration is determined by the(-

degrec; of contraction of musclo-s in the larynx.

The trachea coritirmues below the larynx to a point beneath the top

of the lungs whore it branches into the bronchial system. Thle bronchi

F are tubes of varying diam-feter, aach bronchus brlanchirng into a network

Of smaller bronchi, thereby forming the 'bronchial tree" - The smallest

of tire bronchi branch into the alVeolar ducts whic:h conrv3ct to tire alveolar

sacs via atrii. Thle alveolai sacs rearrosc in the pulmronrary rrrbeii

Which has a thickness of from I to 4 microns (several tiie esthan the

thickness of a red blood cell) It is; in the alveolar s;ac:s Llrat the oxygenl-

car~bon1 Jluxidu Uxuilcrrry! tukos piaece bd.rtWoCnC tIjO uioou arid t~lre alr 1r' tire

ai iC.

r



The lungs are enclosed in the thoracic cage. A negative pressure

exists in th" pleural cavity (a potential space between the lungs and chest

wall) with respect to the interior of the lungs. An expansion of the thoracic

caga therefore expands the lungs, while a contraction of the cage produces

expiration.

The major muscles which enter into inspiration are the diaphragm,

the ext3rnal intercostals, and a number of small muscles in the neck. The

downward movement of tne diaphragm pulls the bottom of the pleural cavity

downward (thereby elongating it) while the external intercostals and neck

muscles lift the front of the cage, causing the ribs to angulate forward

(increasing the thickness of the cage).

The major muscles of expiration are the abdominals and, to a lesser

extent, the internal intcrcostals. The abdominal muscles pull downward oni

the chest cage (decreasing the thoracic thickness) and force the abdominal

contents upward against the diaphragm (decreasing the longitudinal dimen-

sion of the pleural cavity), The interrnal intercostals aid slightly in expira-

tion by pulling the ribs downward (decreasing the thickness of the chest)

3 .1 . 2 The Cough Reflux

The cough reflox provides a means for the body to clear its airways.

It is tiigeured by an irritant touching the surface of the glottis, the trachea,

or a bronchus. The respiratory muscles first contiact vary strongly building

up high pressure In the lungs while simultaneously, the epiglottis blocks



the trachea and the vocal cords clamp tightly closed. These impediments

to cir flow are suddenly removed. This allows the pressurized air to flow

out of the lungs at high velocities carrying unwanted particles with it.

Air flow and pressure measurements have been made during coughs

on normal subjects and patients suffering from various respiratory diseases.

14
A study by Whittenberger and Mead indicated that peak interthoracic pres-

sure relative to afmospheric pressure ranged between 90 and 152 mm hg on

the six subjects used (three normal, one asthmatic, two with emphysema

of long standing). Maximum flow rates ranged between 480 and 700 liters

per minute for the noimrals and 25 to 150 liters per minate for the patients

with emphysema. The total volume expired during the first 0.2 sec of the

cough ranged from 0. 1 5 liter for one of the patients with emphysema to

1.19 liters for one of the normals. The pressure was sustained for a

considerably longer period of time for the diseased subjects than for the

normal, indicating a higher impedance to flow and decreased efficiency

of the cough.

Other studies have radiologically examined the outline of the

trachea and bronchi during cough. Therc soeoms to be no question as to

whether ot not these passages contract during the cough, but precisely

what. mechanism is involved is in doubt. It. has been shown experimentally

that the airway passages contract even during normal expiration.
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-,iRienzo postulated a true peristaltic action which aided in the

explusion of the irritant. Other researchers disagree, stating that the

contraction, although variable along th e length of the airwayr, is not a

coordinated peristaltic action at all, but suggest that the contraction Jis

simply a means for increasing the laminar air velocity to that. required

for efficient cleansing of the airways.

There is some indication that the increascd resistance to flow

is highly localized. Persons suffering from emphysema, asthma, and

bronchitis are unable to achieve these high velocities. A study was

performed in which a bronchiodilator was administered to patient., suf-

fering from bronchitis, otheis having emphysema, and a group of normals
1

for control. It was found that th] air velocity increased for those with

bronchitis, was unchanged for those with cmphysen,d, zind was un-

changed for the normals, This gives some indication dS to the general

origin of the resistance to flow in the two disease classes.

3.2 Data Acquisition

3.2.1 Recording

The data with which this paper is conccrned were obtained

in the form of analog tdpe recoidings. The reco;dings used fall into two

categories -- those iecoide-d directly fLow ho.spital rooms at Woodlawn

Hospital in Dallas, Texas and recordings of forced coughs and simulated

Uf L$JLULSL ,



21

The hospital recordings were obtained with the following equip-

ment arrangement. Microphones -ere placed in selected hospital roorns,

primarily in closets. The signals from the microphones were carried,

via long cables, to recording apparatus in the basement of the building.

The signals from the microphones were recorded on a continuous tape

loop. The amnplitied signal fiora the microphones were operated on by

a voice controlled relay connected in parallel with the continuously

operated tape recorder. A filter was adjusted empiticiaily so that

tie voice controlled relay threshold was not, exceeded by all artifacts,

but it was not rossible to efficiently separate all couqhs and artifacts

by this adjustment. The voice controlled relay actuated a second tape

recorder which was operated in a start--stop mode, The continuous

loop recorder output provided the input for the start--stop recorder

and allowed sufficient delay for the second iecorder to come up to

speed after having been actuated by the voice controlled reldy. Re-

cording speed of that start--stop recorder was 3 3/4 ips.

Recordings were made by the above decr•cibed equipment triostly

at night, which is a period of light hospital activity, to avoid recozding

the numerous acoustical artifacts which occur during the normal daylight

routine. The equipmernt wa:s unattended fou thej riajority of the tiec that

reorlding took place.
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The recordings so obtained are typically characterized by high

background noise (with respect to acoustical events occurring in the

hospital rooms) and widely varying recording levels. Fidelity was not

at the most desirable level because of the low recording speeds and the

ru--recording. For the most part, however, coughs and artifacts could be

distinguished by ear.

Recordings of simulated coughs and artifacts were made both in

tile laboratories at Woodlawn Hospital and at The University of Texas

at Austin. Recording speed was 7 1/2 ips and recording levels were

monitored. Coughs were forced coughs of normal subjects. Some arti-

facts, such as conversation and doors closing, were recorded directly.

Others were obtained from commercial sound-effects recordings.

3.2.2 Digitization and Segmerrt'tion

Early in the research programn it was necessary to make a

decision as to the basic philosophy to be followed in data reduction.

Two alternatives were apparent. The first was to build special purpose

circuitry to ple-procuss tile rocoidod audio siynals; •le sccond was tO

digitize the audio data directly and perform all data reduction on a

general purpose Qomputer. The second alternative was chosen in the

interests of flexibility.

Two ouriputur I uilitiuý weie utlA ZCod * Thiu ElcrclLngira-crin~g

Deportment it the University mKairtadinr a Scientific Data Systems 930
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computer which includes as peripheral equipment analog-to-digital and

digital-to-analog converters. The University computation center main-

tains a Control Data Corporation 6600 computer. The SDS 930 is operated

on an open shop basis while the CDC 6600 computei is operated on a closed

shop basis. Data digitization was performed by the SDS 930 computer

while the majority of the computations were accomplished by the CDC

(6600 computer.

Prior to digitization of the data, spectrograms wore made of a

representative sample o.f the analog signals. It was found that the

highest frequency of significant maonitudc was in the vi cinity of 6 Khz.

The Nyquist rate is therefore approximately 12 K samples/sec. In

practice it would be aesirable to have a sampling rate somewhat in

excess of this value. A program was written for the SDS 930 computer

which allowed digitization at a sampling rate of 16,500 samples/sec.

The A/D converter performs a 12 bit conversion with a maximum

conversion rate in excess of 30 K conversions/sec. Conversion accuracy

is specified by the manufacturer as i the least significant bit. Full scale

input used was + 10v to yield a quantization error of approximately 10 mv.

The central p-ocessoi memory consists of 8,192--24 bit words. The

nominal length of a signal to be digitized is two seconds. Pt the 16,500

conversions/soc rate used, the available memory is not adequate to buffer

the digitized data.

_I
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The magnetic tape units which are included in the peripheral-I

equipment may be operated in an interlaced mode of operation, however.

When operated in this fashion access to the central processor is required

only when data is requij-cd from the memory. The interlaced mode utilizes a

priority interrupt system. One of the priority interrupts is available for

program use in a real-time environment. This interrupt was used to

signal the beginning of a conversion.

The A/D conversion program controls time of sampling to within.

- 0, + 3. 5 microseconds. The digital data is formatted and buffered

in the central processor memory whila previously converted ddta is

simultaneously written on digital magnetic tape. The conversion rate

is limitea by the speed of the tape transport. Although a higher con-

version rate could be accomplished at an 800 bpi data density, 556

bpi recording density was used in the interests of greater reliability.

A digital-to-analog conversion sub-routine was included in the

program. Use of the interldce feature was made to allow simultaneous

D/A conversion3 and reading of the digital tape. It was found that the

D/A output could be directly connected to a speaker to yield an audible

output with sufficient fidelity for monitoring purposes. Additional D/A

features werc incorporated to output synchronization and calibration

signals for oscilloscope ox oscillograph monitoring.
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The tape recorder output was connected to the input of an adjust-

able filter with attenuation characteristics of 24 db per octave. The break

frequency was set at 4 kHz. The output of thu filter was cunniected to the

computer multiplexer -- A/D converter input.

As previously stated, conversions were initiated by a priority

interrupt. A pulse generator provided the inpuL signal to the interrupt.

The pulse repetition rate was 16,500 pps, 1 pps. The output of the

pulse generatoi was continously monitored by a digital counter.

Conversion was initiated and ended by computer console sense

switch operation. After an A/D conversion was completed confirmation

of the digitized signal was made by utilization of the D/A cunveision

subroutine.

The digital data tape which was the product of the program was

formatted with 1,000 -- 12 bit conversions per record. The binary re-

presentation was integer two's complement. An identification record

followed data records within a file, a file consisting of the data con-

verted during an A/D conversion cycle. Adjacent files were separated

by End of File marks with the last file on •he tape being followed by

double End of File marks.

The CDC 6600 computer's binary representation of integer data

is in one's complement, sixty bits per word. The 6600 was programnmed

to reformat the data.
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Varying recording levels in the original analog data required

that the data be normalized with respect to amplitude. This was ac-

complished by arbitrarily setting the datum point in a file with the

greatest magnitude to a floating point magnitude of 10.0 and scaling

the remainder of the data points in the file accordingly. Additionally,

efficient computation by subsequent programs required that the files be

reformatted so that the identification record proceeded the data in the

file. Provision was also made to ensure that the mean of rho data was

0. The normalized data was written in binary format on magnetic tape.

Due to the manual start - - stop digitizing technique used and

the nature of the original analog data, files contained segements of low

level data (hackgound noise). It was therefore necessary to locate seg-

ments of the files which contained usable data. An algorithm subse-

quently used to calculate the Fourier series representation of the time

varying signal required that segments of data used in the calculation

contain a number of data points exactly divisible by a power of two

(this algorithm is described in a later section of the dissertation).

The divisor chosen was 1024 points. A file was searched until a value

exceeding a specified threshold L, was encountered. The conversion

number of that value was assigned as the start of a segment. Subseauent

data points were assigned to the segment until no values exceeding L

were found for a pre-specifled time intoeval, td. The number of conversions
d'
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corresponding to t were subtracted from the total number of points assigned
id

to the segment to obtain the length of the segment. If the segment so

located was shorter than a specifieo time limit, t , the segment wasr

rejected. After segmentation of a file was completed, segment lengths

were adjusted to be an integral multiple of 1024 points. The values L,

tr, and td were determined empirically. The following values were

found to give satisfactory results:

2 . 0

t = t = 1024/10500 sec •1/16 sec
d r

The normalizing factor fore a. . was recorded for future use in

calculation of the significant noise level.

After segmentation was accomplished on the CDC 6600, the

original data was scanned on the SDS 930 by the D/A conversion sub-

rountine. Cliss identification of the segments and 1024 point subsegments

was confirmed by listening to the D/A converted data.

Summarizing the digitization and segmentation programs, analog

data was digitized on the SDS 930 at a convoesion, rate of 16500 conver-

sions/sec. The data obtained was normalized with respect to amplitude

and subseyrnoited cn the CDC 6600 computer. Confirmation of segmentation

and class identific-ation (cough or artifact) was then made by use of the SDS

930 D/A conversion subroutine.
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After the completion of the above process the digitized data was

on magnetic tape in a format compatible with computation in the, CDC 6600.

Punched caxds wore included in the output iorn the 6600 ; .eýram on which

were entered segment and class (cough or artifact) -- cr:fficaton. After

the original digitized data was scanned on the 5DS q30 to ccinfirm class

identification of the subsegments, the pun:;shed cards were altered if

original class identification was erzor:,oi•s secti' n or background

noise identified as a cough). The punched cdii: weoe tlhen used as

input data, along with the 6600 formatted tape, fur subsequernt prog)-ams

on the CDC 6600. Data not included wi thin one of the subsegments was

nol cunsidered in subsequent calculations.

3.3 F'eature Extraction

The measures calculated are described in sections 3. 3. 1 through

3.3.34 of this report, They fall into four broad cdtegorios:

1) those concerned with the magnritudO of the normalied I
amplitude of the signal.

z) thosc which rup usetit tL'; foim of the enveiop.' of the signal.

3) zero crossing ropiesuntetions.

4) spectral analysis neasures.

"3.3.1 Amplitude Density Approxinuation t'caturt

An r';wirr lrlirt f t . . . . ..© jcv'OOI'4 Of th IIU

that an analysis of the shapu ui the auiplitude aistuilbutionr of tli,- r normalized
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signals could offer possibilities as a measure.

A 1024 point subsegement of data was operated on to obtain an

est-mate of the probability density function of the amplitude of the signal.

Thirty-one equi-spaced limits were used to yield thirty-two increments.

i The increment limits are as shown in Table 3-1. It is noted theL normaliza-

Shtion accomplished during reformacting was with respect to the point with

maximum magnitude within a recorded file and that several segments and

;ubsegments were included within this file. 'The mean value of all points

within a file was zero, but such was not necessarily the case within a

subsegment.

K The algorithm used to implement thc amplitude density of-proxirriLion

is given below. The inriawment address calculations take the ion', of a tree

where the iterative decisions described determine the branch chosen. The

tree terminates with a tota! number of branc hes equal to the number of

classification intevals.

SDefine:
L

tA
F value of jith sample in a subsegment

L
Number of intervals used = 2

DAinterval width (difference of interval limits)

V4= 2 MD1

L interval number; highest amplitude value, lowest

numbei; L- 1, 2,. .. 2M+
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Table 3-1

Increment Limits

Amplitude Density and Envelope Amplitude Density

Features

Increment Lower Upper Increment Lower Upper
No. Limit Limit No. Limit Limit

1 -9.375 17 0.000 0.625

2 -9.375 -8.750 18 0.625 1.250

3 -8.750 -8.125 )9 1.250 1.875

4 -8.125 -7.500 20 1 .875 2.500

5 -7.500 -6.875 21 2.500 3.125

6 -6.875 -6.250 22 3.125 3.750

7 -6.250 -5.625 23 3.750 4.375

8 -5.625 -5.000 24 4.375 5.000

9 -5.000 -4.375 25 5.000 5.625

10 -4.375 -3.750 26 5,625 6.250

11 -3.750 -3,125 27 6.250 6.875

12 --3.125 -2.500 28 6.875 7.500

13 -2.500 -1.875 29 7.500 8.125

14 -1.875 -1.250 30 0. 125 8.750

15 -1.250 -0.625 31 8.7A0 9.375

16 -0,625 0.00u 32 9.375
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X =dummy variable used in calculation of interval

address of the jth sample point

The following iterative algorithm identifies the inteival address of a sample

with a total of M + J tests. Parenthesized superscripts denote iteration

number:

() A "L(0) A
X =F ;L. =

5i -1 3-

x x

} *If:I

X(i-I) v/2 <o0 L.(i) =, I(i-i) +/i2 M-i

(') xJ

(i) (i-l)> >O;L. L.

x (i X i-) V/2iX =X

., 2, ....... M

L.(M+ 1) 2 M+I L (N.:

(M4 ]) (M)>0 L. =L.-- I

It is noted that this a1gor itihn is most efficcnt if the F,'s ade

uniformly distributed between + V.

The CDC 6600 is capable of calculating several arthinetic operations

simultaneously providing that the calculations are independent. When a

calculation is dependent upon the outcome of a test, such is not the case.

Minimization of the number of tubLst is.. t•iuCjuf-C roughly equivolcant to
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minimization of calculation time. Table lookups were employed to obtain
I1

2 and V/2 in the above algorithm so that these time consuming calculations

were not made during every iteration.

After the above algorithm operated on all data points ina subsegment,

the frequency of occurrence values were normalized in order to estimate the

amplitude density functions by dividing each interval count by the total

number of points classified. For convenience in later calculations, the

array storing the normalized values was then inverted so that the lowest

numbered interval corresponded to the most negative limit.

3.3.2 Envelope Descriptive Features

A preliminary study of the waveform of the rccorded coughs and

artifacts indicated that the set of candidate features should include

envelope descriptive measures,

The cough signal started with a large amplitude and died off

quasi-exponentially, as would be expected from the physiological model.

This was not. the case for the majority of the waveform,; of recorded

artilacts. The two envelope dependent features which were calculated

were an estimation of the probability density of the envelope amplitude

and an estimation of the probability density of the slope of the envelope.

3. 3. 2. 1 Envelope Amplitude Density Feature

in Order to estimate the probability density function of the ampli-

tude of the envelope, a sampled representation of the envelope was required.
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Initially the peak values of the signal, which were points on the

envelope, were obta?,ned by applying Sterling's interpolation approximation

from numerical analysis. The time of maxima oi minima wore computed by

differentiation of Sterling's formula and then solving for the time when

the derivative of the approximation is zero. A re-application of Sterling's

formulatkuni yielded the interpolated value of the amplitude of the signal

at the time of occurrence of the extiema.

Sterling's approximation attempts to fit a polynomial to the dis-

crete points in the neighborhood of the point of interest. Having evaluated

the coefficients of the polynomial, one solves for the value at the point of

interest. A comparison of the values obtained by this approach to that

obtained by noting the time of occurrence and the amplitude of the peak

sampled points indicated that little difference existed. In the interests

of computational efficiency, the algorithm used for extraction of a sampled

representation of the envelope used this latter approach.

A 1024 point subsegment was scanned to locate the maximum and

minimimn points, The time of occurre ice and amplitude of the extreme

were stored in central memory. The eAgor-ithm utilized to obtain the peak

points and times of occurrence is described below. It will be noted that

the maxima are positive and the minima negative.

Define:

T =magiitudu of maximum peak to peak noise
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F. value of jth data point (relative to start of

) subsegment)

N = number of positive maxima
P

N = number of negative minima
11

D dummy variable

A •th
E1 amplitude of , positive maximurn

£ th
E = amplitude of n negative minimum12.m

4 th
Mp• sample number of t positive maximum ie-

lative to start of subsegment (proportional

to time of occurrence)

\4 =sample numbar of m minimum relative to
nmq start of subsegment

The following algorithm identifies and stores the qudnt.ities Lp,

L n, M p and Mnm The qudiititles N and Nn aie computed. Parenthesized

superscripts denote iteration number:

(o) (0) (o) (o) (o)
D(= ,( 0. m 0, N =), N =0

P n

Define the following events:

0() A .(i-O
)A D•t < 0. T, SU (F F

SSgn

F <

(1) . '' (i)
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Define the indicator functions:

G() 0 if •AAI A 11 if A W ~i

0B ~f 1 if B
G~)iG~) 0 if g C~i

1C 1.4 if E;

if I I I then m m
A B(i)

NI =i

(i)

D + I

N =N +I
n n

if IA I = 1 then t =t - I

(G)M =
pt

(i)

D) = -1
(i) (i-])

N =N +1
p p

Otherwise quantities are unchanged from the previous iteration.

After the peak points have beer1 obtained, the L 's and L's are
p n

used to estimate the probability density of the envelope amplitude by

implementation of the alcorithm descz ibed in Section 3.3.1. Thiutv-two

increments were utilized in the appioximation. Limit valuers were as give.n

in Table 3-1.
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3.3.2.2 Envelope Difference Density Feature

The slope of the envelope was approximated by dividing the dif-

ference in amplitude of adjacent extreme points by the number of sampling

intervals between these points. All quantities required for these calcula -

tions were obtained by use of the algorithm described in Section 3.3.2.1.

The maximum and minimum points were operated on separately.

Prior to calculation of the envelope differences for the negative envelope,

these minima were replaced by their negatives (to yield all positive points).

After calculation of the differences ,an estimate of their probability

density was made by application of the algorithm outlined in Section 3. 3.1.

Sixty-four intervals were used in the approximation with limits as shown in

Table 3-2.

3.3.3 Zero-Crossing Features

A measure which is frequentiy used because of its computational

simplicity is a count of zeio crossings of a signal of a signal during a

cns~iircitinc itcr~nl Aifnrrttirn,,nHxpznnmln n th_ý n'rinrhzC hntW,rnr,

zero crossings would contain more complete information.

The algorithm that was implemented calculated the time interval

(to the nearest sample period) between zero crossings as a first step. A

dead band (centered at zero) which exceeded the maximum noise level

was assigned prior to implementation of the algorithm. It was required

that the signal pass through the dead band before a zeto ciossing was

F
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Table 3-2

Increment Limits

Envelope Difference

Feature

Incre- Incre- Incre- Incre -
ment Upper ment Upper ment Upper ment Upper

No. Limit No. I imit No. Limit No. Limit

1 -1.695 17 -0.820 33 0.055 49 0. 930

2 -1.641 18 -0.766 34 0.109 50 0.984

3 -1.586 i9 -0,711 35 0.164 51 1.039

4 -1.531 20 -G.656 36 0.219 52 1.094

5 -1.477 21 -0.602 37 0.273 53 1. 148

6 -1.422 22 -0.547 38 0.328 54 1.203

7 -1.367 23 -0.493 39 0.383 55 1.258

8 -1.313 24 -0.438 40 0.438 56 1.313

9 -1 .258 25 -0.383 41 0.493 57 1.367

10 -1.203 26 -0.328 42 0,547 58 1.422

11 -1.148 27 -0.273 43 0.602 59 1.477

12 -1.094 28 -0.219 44 0.656 60 1.531

13 -1.039 29 -0.164 45 0.711 61 1.586

14 -0.984 30 -0.109 46 0.766 62 1.641

15 -0.930 31 -0,055 47 0.820 63 1.695

16 -0.875 32 0.000 48 0.875
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tabulated,

Memory locations conesponding to logarithmically spaced banids,

limits of which are given in Table 3-3, wale incremented in accordance

with the number of sampling increments between zero crossings. After

a 1024 point subsegment of data had been operated on, the values for the

zero crossing period counts were normalized by dividing the number of

tabulated crossings per interval by the total number of zero crossings

for the 1024 point subsegment to yield an estimate of the probability

density of the zero crossing periods. Additionally, the average zero

crossin', frequency was obtained from the total number of zaro crossings

tabulated.

3.3.34 Spectral Features

As previously noted, spectrograms of selected recorded audio

signals were made and examined for characteristics which were unique

to the audible cough as contrasted with the artifacts. It was expected

that resonances caused by the various cavities in the vocal tract could

possibly give rise to broad fwqLAuJlCy peaks analogous to iormrints en-

countered in speech recognition studies. FoIarmit like structures were

not apparent, however.

Although formants were not present, jnfoin'iatioii would still be

expecteci to be contained in a frequency domain analysis of thn sinr,_a!.

Several approaches to obtaining this analysis were apparent. A Fourier
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Table 3-3

Band Limits

Zero Crossing Period

Feature

Lower Frequency* Uppoe Frequency*
Bnd No. Limit Limit

1 0 1611

2 16.11 32.23

3 32.23 64.45

4 64.45 1,289 x 102

5 1.289 x 102 2.578 x l0:'

6 2 .578 x 102 5.156 x 102

7 5.156 x 1O' 1.03 o -,1 x 10.-

S1.031. x N"' 2.003 x 10"

S 2.003 x 162 4,12 10:x

IL 4,125 x 10'"

'jiqueli- y /I/Yjild liz
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sories represewiacion or poiume spactral density eatrmit. ov a sub-

segment. would be candcidatoa. k, ahuniativeý nicth-od of Obtainirlg

Sirnl~d! infurmiatior' wo~uld be Lo a *icAgitalI band-p~iss filterngc on
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data . Thk agniyritiri wab &jroyramniertd Inat thi, CDC (bUJ OO IlU(i.~IiL

ti, topr,.; anir foillowu 'uh I:; isrod Cooluy -Tuc4;oy alglaRbItin s tup lay it'p,

Jt will nrlt ba du~c uMA.

A 1 021 pjhut biuhiogtioit ut dotLu wu:;i opwio Lud ot to yi ul'J bi

(o-Xcludinu the D)C corlrjlotoillt) cro.iu rtjll olx Leou11fjllLorii. Thu ntumibUt ;

obta ii,' d W'--tl 111011 'Ott 11 i 1uto, Ia than cqtiitutal to, the lout letj coud! Icluurts

-;Qo diVI t;I()iw liJUUMOi diy to LaU Iw iO cj(Lcc urrt iL t L h ar l icimill 'rj late i rtd I r'-Ii 0 d

ca tl 1'u ru1u.isrret wvul not pnr oiuriod; nutmr~j1 log ruto and tiubinaoint'nt. lIt-nt~iir,
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ara identical for all data processed and tho, values are required Loi com-

parative purposes only.

- Because of the large number of coefficienlts which resulted from

the(- coQmputations outlined above, it, was necessary to eff-ect further dlata

reduction. This wais done by summing the squa~red magniludes. of. the co-

r elficients over bands and by extracting information concerning pnak-

I -fC-reqenie's anld amll-litude of Lh'3 maignitude squared of tire co~efficients

at thesec pzak frequencies-

3. 3. 11ForJrP-ind Featurres

As, r'.-ted aboX-ve, the :n-eijuaud rtarjiitudu.±; of the- Fouurie-r c.oefficients

Lill sMmed o~ver bJand's ,A toutu o! uiin-c I ogrithmrica] ly spaced bands

wowU usefd. Band jirtifts" are. shownl in Ta~l au 3. *1.

1 ~ ~~3. 3.4.2 Ie u r y 'Ve] i' Muu

The squat uicd ritugri iLude of1 I hu louii-t irclieltswere operatedI)I __oty th' eti1vulftIpt d'tutIruijitIItoj al(]ou itlir desv-bu ii, Sectionj 3.3 . 2.1 of

iio rl wolirt to do tat :Imlire Ih Ire 4Lu u j cc Ul us t .,.+ ch a inpijItude peaks

j ocursud 1 lne iruitua wIcIlut 01rditeId w;rtl' U.S)OLt urugrliLtude( 41r1d

the- twentllYjuk whir the ywutustý. Itra(jiitud: wetec'bct'-d- A totail of

~Q eI jhty tucst wer ;itidcuc ii thir uluts of the- tyiicitjtitude; of L~the

indak ciii'J - lut r ' 1Ju t LAlile side- of the. pu~k irIItKU;at

whit c' Ue q a det] its'dl;'; il d eo - U lto tie jse-.A vlueu- Isi tire

Ij
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Table 3-4

Fourier Coefficient

Magnitude Squared Bands

Frequency Limits

Upper

Band Limit

No. (Hz)

1 16.11,

2 48.341

3 1 .128 x 202

4 2.417 x102

4.995 x 10

I .01 5 x 102

7 2.046 103

8 4.109 x 103

8.234 x 10

a
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event that less than twenty peaks were apparent, a value of zero was

assigned to tie measures for which no peaks wc:e found.

3.3.5 Measure Suminary

Table 3-5 lists the features which were calculated and the measure

numbers assigned to them.

3.4 Measure Selection

The algorithms outlined in Section 3 .3 of this paper were

used to calculate a total -Mf 228 measures, A segrenut of date contains

several subsegments, each of which is representud by these 228 quantities.

If the segment consisted of thirty subsegments (a not unusual occurrence) ,

the pattern would heve 6840 dimensions. Such a large dimensionality is

unfeasible for real time implenentatuon by spacial purpose circuitry. The

fast access memory requirements to: a gr-foiCiAl purpose computer irnple -

sIan tat .on would be sizable. It was thurdlulo necessary to select a sub-

set of thu computed measures; for usr, in training and classificatioll.

1110 prioblem, then, is; to order the measutio; inL " mnarine r whic 9M

rufluct s tie lt;,maximun prolbability uf lolt:t ll;jsific tion or, uquivalcntly,

which minimizes ti, ll ; ahilily of 2, ',rl ul ossificCatiun. After ordcuiiIri the

Inlclasureb s lui would cioose th tI lLtO 1i jei u J oldc-l en 11d;ue.ue; whi li(A etlher

~~~~o . .. .. .. . . .... ll .. .l tJ l l J

allowaJble oulh~leity nf the• ln..Jhiidnu

I!
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Taole 3-5

Table of Measures

Measure
Nos. Feature

1--32 Amplitude density -- least values,* lowest
number

33--64 Envelope amplitude density -- least values,
lowest number

65-128 Envelope difference density least value,
lowest number

129-138 Zero crossing period density -- lowest fre-
quency band, lowest num'-.e-r

139 Average zero crossing frequency

140-148 Magnitude squared Fourier coefficient
bands, '.owest frequcmncy, lowest number

149 -168 Normalized frequency of Fourier peaks -

highest amnplitude peak-,, lowest number

169 -1 8U Amplitude of Fourier peaks, coirespondling
to rnaasu'es 1/19--i68

189-208 Lower quorter powu;r frequency corresponding
L i i Ji-i:Ju i u s 3 4 ' -1 t,

209-%~28 Uppor quaiteir power ftuquuncy coriuespondiny
to measureS 140 -168
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It the pattern is the input to a machine which depends upon

distance in some sense between patterns of differing classes to effect

recognition, one wishes to identify those measures for which high pattern

densitles in Ed of the opposing classes are least overlapping. In terms of

the joint probability density functions this indicates that the chosen measures

should be those for which the joint probability density functions, conditioned

on class membership, exhibit the greatest difference in value.

If a Bayes machine is to be implemented, it can be shown that the

same criterion applies. For the two class case, recall that the classifica -

tion surface of the Bayes machine with a symmetric loss function is given

by:

p(1)p(Xll) - P(2)p(X12) = 0 (3-1)

Dafine:

R1= ~X:p(1) p(X. I]) >j4,)(•)X 2)3

R2  tXp(2)ri(X1)¾l)p(XIi!)}

ability of uiukiny in erroneous decision, P , is given by equation (3-2).
I

r

p = ip(2)p(Xjz) dx . 'I Xr '' j( 1 --IZ d .. - d " 'c 2

2

) 0(L1I
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- .. ~[p(:i)p(X 1) -P)'X)]dx 1 . *dxd

+ [p(2)p(X12) dx dx
R2'

- - .[p (2)~x2 -c (X)p 12)3d 1  .x

pe f p(I)p(Xjl) d~x ...dx

... rp (2.) p 2) dx1  dx d
R 2 (3 -3)

-{ p p(1p~j) p p (2)p(X2) d x..

Minirnizatiob- of P implies maximization of c!, defined in equaŽtion

(3-4) giver below:

p ( I p(1(x Ii) -W P(2)(2) d x dx~

If Ulf- Inobcibility dun!jitiy fuiiuLioyis, iuc dit~ui ut iatheui tla.l c~ontinu-

ous, sumnmations take the place of integrations.

Use of (3-4) r(eq(uires knowle~dge of the: a prioril p~ro)babilt.es Of

OCCUriencu and th3 conditional join~t density functions for sub-seots of the

inca sui os talken d at Atirije Should th- a p iui i ptobabil ities be urnknown

and uno stiniablo , wu ixiiinun- Likelihood clas,;s ilicAtion is appropria to, in
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which case the quantity to be maximized is given by d defined in

equation (3-5) given below:

r" 3 .. I p(XlI) -p(Y12) dx1 l.d"dS• - 0 Aý I" - - "
Af - (3 -5)
E

It is seen that (A assumes a maximum value of 2 for disjoint

classes. Under the presumption of statistical indpendence of the measures

3
it has been shown that minimization of equation (3-5) is equivalent to

selection of the d measures which maximize j, defined as:

d I I) p- .P 12) I dx. (3-6)

where p(x. I 1) and p(x. I 2) at the marginal conditional densities. Smine
a -i

measures with which this dissertation is concerned undoubtedly exhibit

statistical dependence. However, due to the impracticability of estimat-

ing the joint probability functions and uncurtainty regarding a priori

probabilities of occurrence, the relationship given in equation (3-6) was

used to sel,.ect the sub-set of measures upon which training and recogni-

tion was performed.

The algorithm described in Section 3.3.1 of this paper

was applied to th-i measures to estimate their marginal conditional prob-

ability density functions. Thu absolute values of the difeicinces in

estimated ptobabilitics forL the two classes were then summed and the

A'A
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rosulting vdiue:s ordcrcd With resDpect. LO naygiitud!.. Rasults ara, giva~n

in Chdptur 5.

*AM



CHAPTER IV

PATTERN CLASSIFIER MODEL

4.1 General Considerations

Prior to describing the machine which was chosen to implement

the categorization, a brief review of the desirable prope2rties of the machine

is in order.

Since we prefer that the model cihosen be adaptable to real time

implementation, simplicity from a hardware viewpoint is a consideration.

The TLU previously described would meet this requirement, as would

circuitry which selects the maximum of several signals which are weighted

sums of the input measures. Networks which realize c logical switching

circuit would also be candidates. Other possible implementations would

require the storage of values in a memory of some description. While

these techniques could be implemented with relative case in a general

purpose compute!i piugiam, the real time circuitry would be more complex

than would be desirable.

it has prev.ous iy been notect that the use ol the general 13ýyes

machine requires estimation (and subsequent storIagc) of p (X i) and p(i)

for all X in Ed, which is a formidable task If, however, thte measures to

be used are- binary voluec] and -jt(tisticlly independent, the Bayes machine

49



for the symrnetiic loss function assumes a pdtiticularly simple form. The

derivation of the discriminani function for this special case is taken from

10zN Rillson t

Recall thet the- Bayes discihinirnt function foi the symmetric loss

function is g (X) p(X/i)j&t) or equivalently with r-.spec to the decisions

made, g.(X) = in p(X/i) + In p(U), i = ..... R. Fre the case of R = 2 and

the x. statistically independent, we may write:
Id d

g(y = I in p(x./l) + In p0) - i in p (x /2) - in p(2)

d -txi) (x7 n" I n (4- I)

i= p(x/2) p(2)

where the x. may take on values of only 0 and 1i

The quantities which must be estimated have been reduced to the

following:

p(x .- 1/1) pP =X Pi

1 1

p(x. = 0/i) l_1- p

I ip Jx 12) c(4 - 2)

p(x. 0/2) 1 q, i 1, ... d
1 1

p(i)

P(2)= 1 - pU)

Making use of the facL that the x, ma-y t6,'e on values of only 0
1

and 1 , we mmay write:
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p~x1)p. i-p.
In +1 1. Ir (4-3)

Subs titutiLon of (4[-3) into (4-2) yields:

d d.( -q)-P.

g 'E X4Y 11.n In (4-4)fl 7
I-i q~I- i) 1=1 q. -v

Equation~ 0-4) is of the form g ()W .X, with:

pji -. (I

w !Q in -(45

Traiigo the machine, would thcen consist of estimatingj Ltha vu lucs

Of p.,, qI )( 1) cirnd p(2) and substitutirng thesec stimatcs into thu rl:in

ii hip~s givCln in requtLiun (4-5).

If 011C dc-0s not. he ehrvc o~j of thoe form of tlim Undclrlytnij

probobilihy don2 ity functions for the x., it is not po;sibf Lc)1 to civnc at ani

Op~timal 1 0tLiniOto, of thu icqul icd paci d i.ut~uiL . nu c ius, u liowfvur all

es~ijnipt(- which i,,i tuc son~ii utIDin N~ Hliuli)0 Of jcttciti; !in a ticjiniiui sctL I'1,cjk-injui to

L;I
N11,11I)CL Lit ill Lt L1 J1 1 )1i ; Lb lu~iliri toI ukiss 2
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n Number of patternis in a training set belonging 52

class 1 for which x, 1. _
V1

n NumbeA~r of paitterns in a training set belonging to
2.

class 2 for which x. I

Reasonabloe estimates for pr, q.I p il) and p(2) are:

i 1 I

1E1

p)=N /(N N )(4-6)
1 1 2

Presumringj that the mrachinu doýcr ibcd above is to be used as a

lpattern classiA~ici , a moansý meus t be de-vised to partition 1, and to assign

I binaiy vdluo5 to thc resulting sub-spaces.

Recall that the time SeqcUunceu iepresenting a single cough or

attifact was divided into 1024 sample- sub-segmentLS and niuasurcs were(-

caluulatud Joi each of thcse, sub-segmenets . nu way of p)ortitloning 1

Gnr which the patterns are points) is by the- use- of a non-pr obobhiliL tic

I pI-attein classifief which ouLts on each ro-cgrensmasu~ros individually

I to ariive- at El tC10.it~dtv( decisin d5 to the sub-sugnient- ulass; mombuibr-

ship. SinceQ we are Interosted in a two Lla,;S 1artiltfun, we mady assign a

)klldry value to tire sub)-s egrirort which corn esporids to tine: teirtativc

(10C~in Illde . I'Ul patterlns lintclrduded in the tio unrig sut one woýuld

cxl)oact elosil usiiuinIthu,; nuyauddesions avuu
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as inputs to the binary valued Bayes machine previously described, we

should be able to decrease the number of wrong decisions. Our model,
then, assumes the form ot a layered machine, the first layer being trained

by a non-probabilistic algorithnr while training for the finam layer is

F probabilistic in form, The first layer will be called the liist stage of the

pattern classifier and the s_ýcond layer will be designated as the second

stage.

4.2 Non-Probabil istic Pa'Lern Cil ssifier :irst Stage

The machines examined for use as tihe first stdge wuie themselves
t

layered machines. Recall that a laycred machine implements a pieccwisc-

linear disrc iminant function.

The first banks of a layered machine may be thought of as a Jevice

which perfoims a wrapping froiM pattern space to an image space. Consider

I the case where paiterns are riot linearly separable in patuemn space. It

can be shown that for a particular Ltaining set a first layer may be round

so that the mapped patterns inn decision space are linearly sepatable. "

-or the special case of P = 2 dile first bank consists of a nurnoer of Ti.U1 's

connected i parallcl. Training involves dtet:Erimrinn9ni t! number of TLU'sIequircd and the weights associated with each TLU, The second bank,

consistinj of a sinigle TIJU, which has as inputs the outputs el the first

bank 'ILU's, is trained so that its output inidicates the correct response

I for all patterns in the training set.

F!

.-I
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A linear partition of pattern space is foimed by positioning hyper-

planes in the space so that the space is divided into cells such that no

two patterns of opposite categorization reside in the same cell. A non-

redundant partition is defined as a partition with the property that if any

one of the partitioning hyperplanes is removed, at least two non-empty

cells will merg, into one cell.

4.2.1 Parallel Hyparplane First Stage Implementation

Given 11 hyperplanes which form a non-redundant partition of two

finite subsets of patterns vectors, a sufficient condition that the sets

mapped into image space be linearly separable is that exactly P + 1 cells

10
formed by the partition be occupied by pdtterns. A partition of pattern

space by F parallel hyperplanes fulfilis this sufficiency condition.

The equation of a hyperplane may be written:

C.X = z (4-7)

Given the hyperplane, described by equation (4-7) in E (C /_0),

it may be stated that C is a vector normal to the hyperplane. Any vector

kC is also normal to the hyperplane (k X 0). The two vectors ot unit

length C j C , -c CI j ar e the unit noi mals to the hypicplane,

jI I/1C I is the distance of the hyperplane fromii the origin. Two hyper-

planes are parallel if they have the same unit normal.

*- Iv "Y idy LUi . iiio ai 101 Uo flu t id L PC,) xi of patce'n space with

parallel hyperplonos by the implementation of the following algorithin:

I

-1I
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1) Select a unit normal vector, N.

2) Form the dot product of patterns in the training set with the

unit normal.

3) Arrange the dot products obtained in step 2) in order of value,

largest first.

4) Scan the ordered dot products to find adjacent products that

belong to different classes. Let these dot products (which

are distances from the origin along the unit normal) bc

designated as d(i) and d(i + 1).

S5) Place a partitioning hyperplane perpcndicul;_r to the unit

normal at a distance from the origin in the direction the unit

unit normal of:

z. [d(i) + d(i + 1)J/2
I

6) Repeat steps 4) and 5) until all the adjacent dot products of

differing class have been found. Let P be the total number

of partitioning hyperplanos.

In terms ct discriminant function we may write: .

g.(X) = N zk+ (4-8)

. P.

k 0 if the vector associated with

d(l) belongs to class 2

k 1 if the veclor associatod with

d(i) belongs to class 1
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It is seen that the first layer of our machine may be implemented by

P TLU's. Training consists of finding the z. in equation (4-8) and is non-1|
p.obabillistic in form.

i
Define: •

1 if (X) > 0) (4-9)

- -1 if g(X) < 6

i=l, ... , P

The vector Y, which is the output of the first layer, is the input

to the single TLU which comprises the second layer of the machine. Since

the P hyperplanes have formed a non-redundant partition of pattern space

with exactly P + 1 cells occupied, the vgctors Y in the training set are

linearly separable and the discriminant function which performs the

separation may be written:

g(y) W.Y4 W+w (4-10)

gLY) > 0 - Xe class 1

g(Y) < 0 - XC class 2

It can be shown that a W' which satisfies equation (4-10) is

given by:

Wi i , 2, ..

W 0 P odd (4-11)
6++I

= ("1) P even

where k is as defined in (4-8).
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It is interesting to note that for P odd the discriminant function for

the second layer TLU implements a majority logic decision.

If the parallel hyperplane partitton approach to the layered machine

is used, it is necessary to determine an efficient meains for choosing a

unit normal vector. It would be desirable to position the unit normal

vector so that the projections of the training vectors on the normal vector

are close together for patterns belonging to the same class and fat apart

for patterns belonging to different classes.

It is possible to obtain such a vector analytically if the under-

lying probability density functions are known. The "discriminant analysis

- -----technique used in classical statistics does this for vectors from popula- -

tions with normal distributions and equal variances.

Under certain assumptions regarding the nature of the data (for -

example, unimodality of the underlying probability density functions)

13
such a vector may he estimated from experimentally gathered points

However, no matter what method is used to arrive at the unit normal

vector, the method has inherent shortcomings,. One mrtay visualize any

number of cases where this technique would fail to separate even dis-

joint classes. This failure may be traced to the fact that multidimen-

sional data is effectively being reduced to a sin-'e dimension in patrern

space with an accompanying loss of information. .1

I-i

--



Despite the obvious drawbacks the algorithm is attractive because

of its simplicity and the assurance that a given training set may be

.sepmataic by linear surfaces. Preliminary preprocessing nf the data

indicated that the underlying probability density functions were not unimodal.

No effoit was made, therefore, to obtain a unit normal vector with the

desirable properties ennumerated above. The algorithm was programmed,

however, usinq the difference of the means of the patterns in the two

classes as the normal vector. The results are ennumcr,,ated in Chapter 5

Of this report.

4.2.2 Minimum Distance First Stage Implementation

An alternate means of effecting the-required partition of Ed

(pattern space) takes advantage of the greater "similarity" of patterns

which are members of one class as contrasted to patterns which are meem-

bers of the other class.

For thQ purposes of this dissertation we shall define similarity

in terms of the Euclidian distance between points.

Define:
d(X P.)-A Pi Pl½

which is the Euclidian distance between X and P_. If d(X, P.) <

d(X, P,) we shali say that X is more similar to P than to P ..I -- J

If the P, are prototype points as defined in the section ot the

dissertation dealing with the minimum distance classifier with respect

I!

I!

II
[
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to point sets, a similarity decision may be made using the discriminant

functions described by equation (2-17), repeated below for convenience:

g.(ŽZrXP-P .P. (2-17)± -I i l-i

Since (2-17) set equal to 0 da'Incs a hyperplane, a linear partition of

d
E has been formed. There is no reason to expect that the partition

I
effected is non-redundant, however, if i > 2. If the P are colinear the

partitioning hyperplanes are parallel and the situaticon is as outlined in

Section 4.2.1. If the P. are not colinear, more than a single dimension

is required to define the decision regions. We may logically expect,

-- therefore, that we have preserved more of the information contained in

the original measures than in the colinear case.

Suppose that our situation is as described for the minimum

distance classifier and that we may therefore utilize equation (2-19)

as a discriminant function to obtain the binary representation of the sub-

segment pattern required as the output of the pattern classifier first

stage. Alternatively, we may form linear discrimicant functions for

each pair of P, from differing classes and obtain a vector Vp'opre-

sentation of the pattern, that is, effect a mapping from -,n space

to a binary valued image space. Such a mapping may be accomplished

by a bank of TLU's. If m of the P, are prototype points from class 1 and

n of the P. are piototype points from class 2, a total of m x n TLU's will

be required. A binary logic network with the first bank TLU outputs as

2N_
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inputs may be desiqned which will implement a decision identical to that

obtained by the use of the discriminant functions described by equation

(2- 19). In either case the decision surfaces in pattexn space ai 0

piecewise linear. The binary logic network may possibly (but not

necessarily) be implemented by layered TLU's.

The foregoing discussion has presumed the existence of similarity

or clustering. For the data with which this uaear is concerned,

this presumption appears to be valid. Training for the first stage of the

pattern classifier consists of the determination of the P. which will be
-I

used as prototype patterns for the minimurm distance classifier.

We have defined similarity in terms of closeness of points in the

sense of Euclidiarn distance. A reasonable method for determination of

the prototype points is to determine the centroid of points which show the

greatest similarity. This requires that we find the regions in pattern space I

In which the patterns cluster.

Two b-sic approaches to the solution of this proY.em are evident. -

One approa,:h is to a pliOiL sp•cify tle i_,oun1daiies of a cluster relative to

the ccntroid. Training then consists of locating the prototype points so

that all, or most, of the training patterns are contained in one of the

cl-sters,

A second approach is to place an upper bound on the number of

clusters which will be considered. Arbitrary vectors are assigned as a

ii"

Ii

.I -



first approximation to the centroids of the assumed clusters and training is

completed by adijusting the centroids by the application of an iterati've

algorithm.

If the first approach is chosen, the cluster boundaries will defineý

either hvzperspheres or hyperel 11ps olds depending uipon whether the assumned

distance of the b)oundariis from the cerntr-oid arc equal in all diraýctions or

redilferent along theý com p.en axs.I 'ithe Case a peliminaty

examioation of the data will he neces--sary to determine the distances to

be -used.

Algorithm-s im-plementing both of the. above described approaches

were prograriinuid . DeSurijptIotIs ate given in Chapter 5.

4. 2.3 Summary of First Stage Character istics

At this point a hr fuf sairrxai'y co.nicet iiij theý stz~urctr of thuQ first,

Stage' Of t~ie pa~ttern clasifier is Inl order.

'Fie first structirao consider ad wcas a layet ad rirac-hlriri, the first

hank of whichi consis5tud o~f 'FLU's whse1yper)]trie dciio suifa~cs

we~re par alel . it wi-s! showi. that the o ui.ie~tati~nurof tire hyper Wane defined

bjy the eco: layer TLU Is' fIixedI while- its dis tacre ft()f e 04m the (fij ii is

deopendant only uponl whether th ir usr-ber O-f firsýt batik 'FLU,ý i I odd or) even1

arid, If theý ntumrber of the first balik 'ILO I is e-ven, orn tire cldass 1r1reTirbe -

sI'~p Of tire tra~ininy petttttin winhIC Is fur ftýIQures freer tire Urlinn.1
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thBfinary representations Of the pattern1, X, die .Vdildble as the output

of tefirsýt layer TLU's and as the output of the second layer TLU's It wvas

noted thal, a given set of patterns could bc soparatcd by this structure, but

that second layer decision errors wouid h-a expected for patterns not in-

oulued in the training set.

The scz::ond qtrLci'ure considered was a riinirmirm distance classifier

with respect to point sets .Training for this s~ructuie consisted of

estimating the prototype patternis. It was rioted that two implemientations

of the minimium distance classifier were possible, The first utilized the

discrirni-inanit function given as equation (2-19) whilec the second consisted

of a first bank of TLU's foeding a binary switching cjirc~uit. The decijionis

reached by the first stage worer identical for the two structmurs.

For both thce minimum distance and parallel hyperplane classifiers,

then, two bin epre selltati01 S Of ai p1atten u11 rnn die availlble

The first is a biniary va'lued vector which hids asý elemornts the output of

a first baik. of iLU's. Thu second repesenitcation is a single birrary value

These b)ýnar y repi escnta tiun, are the iinput to t'rio' probabilistic

4. 3 Patte~rn C%3!0Slfier1 Probalistic; -e(;Q,]r Stage!

4. 3. 1 Satticl~l ridt--eridet Mousurcs ModelI

To this point we have been curcornid w~it thv urdered set of rme.atsurves
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obtained from a single 1024 sample subsegment of the original digitized

data. Define X as a first stage binary representation of the jth subseg-

ornnt. Suppose a segment contains k subsegments. Define:

Z (1) (2) (k)z (-x x X

Utillizing the locgarithmic form of the BDdyes diP;crimiriant function

for the syrnmetric loss function with R= 2 and assuming tho statisti-

cally indpendcnt, we may write:

P (x L)U
:- • 1-.n + 'tn

g( - + t-g j l' 12) p(2)

If the elements of X are assumed to be statistically independent

the following relation apples:

0)
K- d p(x. i)(1)

-~( -f 1J -

j)>A i=1 p(x 12) p(2)

Dx!fine the subsidiary discriminant functions:

d p(x. W )
g J ) (. =( -3)

14l p(xj)' 1 2) (4(1x)

LqCuation (4-13) is of the form of equation (4-]) with p(l) 1p(2)

(maximum li elihood discririinant).

Substituting (4-13) into (4-12) yields:

k g(j)(X• +1 p (4-14)

I

I
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Extending the nomenclature previously used to define the various !

probabilities, we define:

p(xP)I

(x 0 1 1)1P

(j) A (. )

p(x. 1 oj2) = -1q )
-X 012) A10

Then: (i)

Z (Ž>x tn
( 1 G( IF

(4-15) - ,
d ( _p 1):

Substitution of (4-15) into (4-14) yields:

(1) (0)
k d P) (1-q.

g (Z) X, t i x
-j= i= t0•- 0)

i{ J:] l l (I - q (j)) p(2 W

d dimension of X

k No. subsegments

Lquation (4-16) is of the fomi:

II
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g(Z) W.Z + w Ll(-7

Wand Z t- dimensional

where (.) (1 -

w = w =4 I i) jxd4 ()J)

W = r ~ ~ i (1 d I-P

k-- = ~j=1,..... k -

(4-18)

m=1, 2,....

i ,{,=d x k
k ci (i - -!C1 k

w =P> i +%

(J) (j) : "
Training then consists of estimating the pi ' q. and )(l),

(i = l3 .1.. . , j 1 . ... k

4.3 .2 Markoff I Distributed Measures

The presumption of statistical indpendence invoked in Section

1.3.i w'as justifiud 011 tha b.asis uf IIJ!, dtii !, cl tdr i Iy .....

elements of the biriary valued vector iepiesent time sequential first stage

decisions, a possibly better assiumption is that the measures compiise a

Mork'off chain.

Tho gr•ncal logarithinic fulmi of the two class symmetric loss Bayes

dis.cniimiant function is ropeatod below:
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P-

g(= zn p(X ) - tn p(X12) + tn (4-19)
p (2)

p(xIj)=p(xt, x i) (4-20)
- 1 ~2' k

1=1, 2

k number of sequential first stage decisions

If (x, x2 ... x k) is a Markoff chain, by definition

p(x. Ix _ x . . ) = P(x Ix -)
i i-1' 1-2 1 1-1 4-1S~ (4-21)

ia 2, 3, ... ,kI Then, by the definition of conditional probability:

P(k'k x X xI)
= P(X lXc 1) P( k- X k-2 )P(xk- . . . )

k' ki ....... x) Pp(_ (k-2'2'"
-p(x Ix )p(x Ix )p(x

k k -1 k-i k-2 k-2' 1 -

k
p(xXkl i xk x ) = (x TT2 (x. Ix. (4-22)

Substitution of (4--22) into equaticn (4-19) yields:

p(xii) k p(x i, xJ

g(j.)= Pn px 2) 2i=2 p(x..2, x(,

(4-23)
] -p(1)4 t-n
I -pOI)

Recall thdt X may take on values of only 1 and 0, Define:

p (XI = p

P,(xi x ,•i-I L! I
p(x. i 1l xi_ [) s,

0) .

iip(x x
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p~x=0 i = 1= 4 -r.01

p(x. =01 x0 1 =0) A=1 - s.
SPh1 i-I)=1

p(x= 1 2) q (4-24)

p(x. 1 2, x 0) v

p(x I1 2, x
[ ~A

p(x =2)= x-
1 2,, 1

1

r.s

+n . (lx )In-

l .S1 (I .1 n

Vr. 1-.
+ [1xj~ - + (l fl-x _ ) tn]

s.([ i-i v.)tv

+ Xts(1,-r.)( -v-,

tn 1

1

1 -s (1. •

+n In1 1-
÷ + xix~~~i-v . s(-.( v)

1

I_



Al so: - -P(×lI)2
=xx n x 4 +1(1--x ) in

S(X 12) q 1 (0-q)

q( -p) ( -q)

Substitution of equations (4-25) and (4-26) into equation (4 -23)

yields:

k s.(1-v .)

q(1-p) P-22 x-S.)i=2 z .1- .

k r v(0 -t) 0I -s.) .t ni=2 ti- S.s.(I -r,) (I!-V.)

1. 1 1 .a

(4-27)
+ = 1-n (I-t.(-s. + F.n PO

1 -q I -p(0)

If k is fixed, equation (4-27) may be w'itten as:

P(1-q)(1-r )(1-v
yQ~)1  ~2 2J(V X) = I n ( )_1, , , %/ 1,- • -

2 2

k-i s.(0-v) (I-r )( -v+ X. 1
i=2 v.(0-s.)(I -t 1) -S

i =i+ I -i 1)

s (i-v+ Xk -tn
k v (1-s

k k

(Equation cont'd on next page)
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1 1 1i-i t. s (1 -,) (I -V,)

k~ ~ (1s) () (4-28)
1-cr -1l

Equation (4-&2) is of the form:

4-4-,Y

where;

S(V)= x1  ~ 2..... (4-30)

Since x is binary valued:

x x 0 for/x. x 7
-'131)

x x =1 for X.X.

Equation (4-31)rnay be implemented by a TLTJ; equation (4-29) may

therefore be impLI-mented by a layered machine. Since a layered machine

implements a piecewise linear discriiminant function, g(Xj in equation

(I A9 i Z pic- s 4 - I If this rcalization is, use-d a-, the seccond

stage of a pattern classifier for which the first stage is piecewise linear

(for example the first sL'e:.e described in Section 41.2 of this papc-r)

the composite m-iachine is piecewise linear.

Training for, the Markoff machineý consists of estimating the

quantities defined in (4-24).
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Define:

P Number of class 1 training patterns for which

RR. Number of class I training patterns for which

x, =1 and x. =1; i 2 3, m.

S. Number of class 1 training patterns for which

x = 1 and x = 0; i = 2, 3, .... n.

Q Number of class 2 training patterns for which

xj = 1.

T = Number of class 2 training patterns for which

x.= 1 and x = 1; i =2, 3 ..... m...i

V. Number of class 2 training patterns for which

x. = 1 and x = 0; i 2, 3, ... m i.a i-]I

N = Number of class 1 training patterns havinglj

at least j components (assuming that the

patterns can have a varying number of coin-

ponrents);l,- 2 rn4 32) N

N = Number of class 2 training patterns having
2i

at least j componerts; j = 1, 2 ...... m.

M = Number of class 1 training patterns for which[, i

S= 1;i =2, 3......m.

[22

S I

i : !

____
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M = Number of class 2 training patterns for which
21

X I 1 i= 2, 3,

bi = Minimum of the maximumi number of components in

class 1 training patterns or class 2 tiaining

patterns.

Reasonable estimates for the quantities defined an (4-24) are:

P - P/Nl q = Q/'M1
PIN21

= R./M
rt 2i

(4-33)
s. S./(N -N) v. V./(N -M

a l 1i ii~ 2i 2i

i=2, 3 ... in

If k, the number of components in a pattern, is fixed, equation

(4- 28) may be used as the recognition discriminant function. If k is

variable from pattern to pattern it is necessary to use equation (4-27) to

effect recognition since it is not possible to compute the constant term

until the dimensionality of the pattern is known.

4.4 Composite M\/achinen Struicture

Recall that the first stage of the pattern classifier described in

Section 4.2 maps the pattern intoa binaryreýpresentation. These binary

values may be either 0 or 1 or +1 and -1, depending upon the representa-

tion required for the succeeding stage.

Figuie 4-1 is a block diauram of the pattern clabsiliers implemented.

33

" ! ]I
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Referring to this figure, A is a vector consisting of d real val'ed measures

"for the ith subsegment ija a pattcrn. There are a total of I: subsugments in a

pattern. Z is thereftre - c'xk dimensional vector which repiesents a complete

pattern

Assume that the ;•fit stage of the first layer of the pattern classi-

(y)
tier consists of p TI,,Ts Y is ,- binary valued p dimensional vector

representing the ith subsenment of the pattern. V is the first stage--

first layer binary representation of a total pattern, and co;nsists of pxk

ordered binary values.

The fo utput of to,, second layer" of ihe first stage of the pattern

-"classifier is a binary valued scal..r u. which represents the pro-

lirinaly decision made by the first z.taoe of the pattern classifier as

to the classification of Ithe ith subsegmegi of a pattern.. U is a k

-di rensonal binary valued vocror which rep:aesunts the preliminary

sequential classificotion decision.; of the first stage of the pattern

classifier for a complete pattern.

Regardless of the form that the pattern classifier takes, errors

in classification arc to 1,:; c;<pected. It is logical to -ssumo that an

increase iii the comnp]exity of the machinre chosen would be re:flected in

a loweIlug iOf tihe p objbiii of erroneous cldssiflcatiOr4,

Five second stage classifier,- were imrplemenwLd. The differences

in mau;hjne uumplaxity will he apparent from the, desculiptiours of ith

I

i11
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machines. The structures of the machines follow froma th•e presumption

macle concerning the statistical properties of the first stage binary vectors.

These presumptions are outlined in the sections of this chapter of the

dissertation which follow.

4.4. 1 Machine Nun-ber 1

Referring to I'igcue 4-1, machine number 1 cperated on U, the

first stage--second layor output. This imIplementation was made under

the assumption that the u's wore statistically independent and identically

distiabuted for i 1 , 2 .... k. The applicable discriminant function

is given below as equation (4-34):

F: p~Llq) -_P)
9 1 (U)z=J u 1n + •tdn---k-Lx--

I- j--] j 01] -J) i-q I-p () (4-34)

p ond q were Cstimatcd from a training subsot without regard to subseg-

mernt number. IL Is seen that only three- value,; must be stored for the

sec(;e.d s3tage classifier.

4.4.2 MWchine Number 2

llfc,.ng to T•i'-.. A ,I-r o"- cr.-r-ted on Vu thV

first staga --- first Lank binary re sepre._•itation. This ir.pIlenmentation was.!

made under the presumption that the y si)'a wore ,statis.tically independent

over j = t, 2,..., 1) and id'r-%tic;a1ly di Utibutod for i , 2 , ... Th

applicable discrimninanIt function is ci,,rr below a:; equation (4-3)

n' w uI

I. !
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k y p(1-q.)

2( i-1 j=l - q(l-p
.3 .3 (4-35)

p (i1-p.)

+ k 7 Zn - 4 tnj=l Gi-q, 1 -p(1) 7-

The p. and q, were estimated from a training subset without iegard to sub-

segment number.

4.4.3 Machine Number 3

Referring to figure 4-1, machine number 3 operated on U, the

first stage-second ldyer output. This implementation was made under

the assumption that the u.'s were statistically independent, hut not

necessarily identically distributed L,, i 1, 2......k. The applicable

discriininant function is given below ai; equation (4-36):

Z --.

k p(l-q. k ( -q.

1. 1 1 -

(4-36)

The pi and qi were estimated from a training subset using only the ithai
subsegments to cstimate p, and q,"

4.4.4 Machine Number 4

Referring to Figure 4--!, rachile rnurmber 4 oleated OIL V, the

first stage--first bawink binary repoesentation. This inipplenrcntation was

rnade unldul thie plesumi)tion that the yi s woreo statistically independent I
2i
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for i = 1, 2, .... k; j t, 2 ...... p, but not necessarily identically

distiibuted over -. The. applicable discriminant function is given below

as equation (4-37):

4 1=1 J. I[LJ q (i -p
j j

(4-3 7)

(1 -p.
4 n + -,n DC n l-cl.i) 1.•, -p (1)

(J)P (I)

p. and q. were estimated using only jth first bank TLU output for the

ith subsegment in the training subset.

4.4.5 Machine Number 5

Machine number 5 is identical to rmachinc number 3 except it was

assumed that the u.'s were Markoff 1 distributed rather than beinq statisti-

cally independent. The upplicable disciiililidit fuction is given below Ds

equation (4-38):
p(] -q)(l -r )(I -v~.,2 2

g liU q(1 -))(] -t )( -s
2 2

k-] s(. -v) -I )(-v
+ )I U. i-n-

(4-38)
S (I -V)

+- uk tn

(equation continued on nexL page)
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1 v

=2 i ui-1 ts.(-r. 1 -v.)

k ( -S.)
+ 7 tn 4 ,n 4 ýn

i=2 (1 -v .) 1 -q 1 -p(1)

The various probabilities were estimated by use of the ielationships

given in (4-32) and (4-33) with respect to u.



CHAPTER V

RESULTS

5.1 Data Processed

As outlined in section 3.2 of this report, data processed was

from one of two categories. These categories were:

Category one -- data recorded at Woodlawn Hospital

Category two -- simulated coughs and artifacts recorded at

The University of Texas at Austin.

Category one data was taken from recordings made without benefit

of the start-stop recording procedure outlined in section 3. 2.1 . Rather,

the original audio tape recording was edited and re-recorded prior to -!

digitization. Included in this type of data were forty-one cough segments

(patterns) which contained a total of 444 sub-segments and twenty-eight

artifact segments which contained a total of 342 sub-segments (a total of

sixty-nine segments and 786 sub-segments)

Category two data included 112 cough segments, which contained

450 sub-segments and twenty-eight artifact segients which contained

850 sub-segments, total of 140 segments and 1350 sub-segments.

When category one data was used for training, it was possible to

estimate the a priori probability of occurrence of the cough arid artifact

classes. In the case of category two data, such an estimation was not

78
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possible, since the true relative number of occurrences of cough and

artifact patterns was not preserved, The a priori probabilities for this

latter case were set equal, which resulted in maximum likelihood decisions

rather than Bayesian decisions.

The discrepancy between the lengths of the category one and

category two data signals was due to the recording techniques employed.

The background noise in category one data tended to make the coughs

longer since the individual "hacks" which constituted a cough series

Were pld(_Ld in the same segment in many caseu. The category two arti-

fact segments tend to contain many sub-segments because they were

recorded from continuous commerical recording signals.

The differing lengths of signal did not have a significant effect

on training and classification results, however, since it was required

that sufficient. numbers of sub-segments be available from both the cough

and artifact classes to obtain reasonable estimates of the probabilities

involved. During the classification phase, sub-segments in excess of

this number were ignored.

5,2 Measure Calculation

Measures were calculated by the procedures outlined in section 3.3

of this paper.

Computation of the measures for a 1024 Point sub-segment required

approximately 0.8 second, of which approximately 0.7 second was expended

on calculation of the 'ouieir serics coefficients. The measure numbers to



7711
A -

which references are made in the discussion which follows are listed in

Table 5-3.

Prioi to utilization of measure number 139 (average zero-crossing

frequency) and measures 140 through 228 (spectral analysis measurns)

it was necessary to normalize the caLculated values so that the rosiltant

measur-es had a nominal maximUm Value of one. Fadilure to elfeCL this

normalization would tend to place emphasis on those measures with the

largest magnitude.

The emrpirical normalizing relationships used were as follows

(v is the calculacted value of the- measure):

Measure No. 139 (dvera~ge zero-0crossing frequency) -- (log v)/1.6500
10

Measure Nos. 140-148 (magnitude squared F'curjer coefficient

-3
bands) - 8. 33 Y, 10 log1 0 v

Measure Nos. 149-168 (frequency at which spectral nroaks occurred)

and meaisure Nos, 189 -228 (spectral peak 1/4 power frequencies)-

0.025 log1 0 v

Measure Nos. 169--188 (magnitude squared of spectral peaks)-

0 .01 lug1 0 v

5.3 Measure Solecctiorr lcsul ts

Th21ir i)!()(Id!j (Hilnt (ii i in q-~r I if in .4 ýA1,a dT ,i)fl I Jed c tcir-O nuoir nr C -l(

data and category two data separately. Tdblc 5-1 is a list of thle results

obtained for the fifty highest r arlked mnca sum es fur catugory one data arid
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Table 5-2 for category two data. The criterion value in columns three and

six of the tables is an estimate of Ip(v/1) -p(v/2) ldv where p(v/l) and

p(v/2) are the marignal probability functions conditioned on the measure

v having originated from a signal betonging to the cough and artifact

classes respectively. The measure numbeis in columns two and four are

identified in Table 3-5. It will be noted that a maximurm possible criterion

value of 2.0 would indicate that the classes were disjoint with respect to

that particular measure.

The measures listed in Table 5-1 will be referred to as "measure

set A." The measures listed in Table 5-2 will be referred to as "measure

set C." The first twenty-five oi the measures listed in Table 5-2 will be

refenred to as "measure set D."

Because category one data contained considerable noise, it would

be expected that the spectral features would be masked to some extent.

This conclusion is verified by the feature selection results. For this group

of data, the features emphasized ale the envelope difference and zero-

crossing features, whil o th S.c.ct...t features ai-e alLmt Ilt.At y eXCuLud.!d,

In the case of category two data, for which the signl,. was relatively

clean, spectral features predominate as those most likely to aid in iecogni-

tion. The amplitude density and envelope amplitude density features are

also stressed.

The estimated absolutc difflcerec in marginal densities; indicates

that recognition erroi rates should be considerably lower than those for

]:
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Table 5-1

Measure Selection Results

Category One Data

Feature Criterion Feature Criterion
Rank Number Value Rank Number Value

1 209 0.727 18 191 0.377

2 149 0.721 19 12 0,377

3 ]89 0.701 20 151 0.374

4 138 0.672 21 94 0.364

5 48 0.640 22 137 0.363

6 135 0.626 23 102 0.362

7 136 0.622 24 106 0.360

8 97 0.466 25 40 0.359

9 92 0.466 26 87 0.356

10 144 0.451 27 93 0.348

11 47 0.447 28 10S 0.345

12 49 0.414 29 18 0.333

13 46 0,392 30 218 0.333

14 96 0.387 31 104 0.332

15 211 0.386 32 17 0.329

16 103 0.384 33 158 0.327

17 90 0.384 34 107 0.324 ]
ii]

I
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Feature Criterion
Rank Number Value

35 198 0.321

36 10 0.317

37 139 0.314

38 100 0.314

39 85 0.310

40 50 0.310

41 44 0.305

42 91 0.301

43 11 0 .300

44 99 0.299

45 51 0.296

46 88 0.291

47 24 0.289

48 95 0.283

49 108 0283

50 45 0.282

?I
I
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Table 5-2 •

Measure Selection Results

Category Two Data

reature Criterion Feature Criterion

Ranlk_ Number Value Rank Number Value

1 11 1.124 18 176 0.920

2 12 1.105 19 173 0.913

3 17 1 .099 20 20 0.913

4 16 1.070 21 48 0.911

2 1.068 22 175 0.911

6 22 1.048 23 174 0.908

7 10 1.007 24 179 0.903

8 4q 0.984 25 23 0.897

9 148 0.942 26 170 0.896

10 177 0.940 27 186 0.892

11 13 0.938 28 146 0.889

12 170 0.938 29 185 0.889

13 171 0.936 30 184 0,887

14 147 0.933 31 180 0.883

15 142 0.927 32 181 0.879

16 169 0.927 33 187 0.877 I

17 172 0.925 34 183 0.877

I - _

~~1
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Feature Cr:tenon
Rank Number Value

35 188 0.868

36 182 0.860

37 9 0.849

38 144 0.849

39 189 0.836

40 24 0.825

4] 145 0.802

42 47 0.800

43 8 0.701

, 44 54 0.79!

45 25 U,726

46 50 0.721

4I 41 0.709

48 43 0.702

49 42, 0.684

50 7 0 .645
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category one data. Results presented in section 5.5 show that such is

indeed the case.

An aidditional set of measures was selected on the basis of simplicity

of implenrentation of the patlcrn classifier by special purpose circuitry.

Zero-crossing ea so esa:.d cnolope difference measures were promising

candidates in the light of the measure selection results for category one

cdata. Thc tv.,enty--cight measures chosen were measures number 85 through

198 and mca.sule numbers 135 through 138. These measures will be: referred

to as "mcsure. set B."''

5.4 Training Set Selection

The first stage of tire pattern classifiem was tiained without regard

to the location of a sub-segmeni within a segment. The second stage of

the clasti ifPer, on the other hand, took the order in which the sub-segments

occur into accuunt. T;1- types of training classes were therefore required;

the first consisted ol unordered sub-segmnents and the second of complete

segirerits (patteris) .

Tirinir•y aurd classification were made for each of tihe two categories

of data separately. A set of Uainir,g patterns was therefore chosen from

cach of the categories.

lhc Irocedure used fur selecting the training sets is given below:

1) A specified prcientage of the patterns (secgnients) belonging

to each of the classes (artifact aid cough) were selected at

dL
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random. These constituted tlv training set and were used to

train the second stage of the pattern classifier.

2) A specified percentage of the sub-segments contained in each

of the patterns selected in I) were clv)sen at random to form

a training sub-set. This sub-set of training sub-segments

was used fe. training the first stage of the pattern classifier.

The relative frequency of occurrence of coughs and artifacts is

preserved by the above training set selection. Use of the training set to

estimate a priori probability of occurrence is therefore valid (for category

one data).

Seventy-five per cent of the available category one patterns were

selected for the training set. This set consisted of thirty-one cough

patterns and twenty-one ari-fact patterns, a total of fifty-two patterns

(out of an available sixty nine).

Fifty per cent of the sub-segments from each of the training patterns

were selected for the trainini•g sub-set. The sub-set consisted of 164

cough sub-seglents and 132 artifact sub-segments, n Ltotal of 296 sub-

segments.

The category two data training set consiAsted of fifty per ceitt of

the available j)attcins. The set c;orltaiie:d fifty-five ;ough puttei us and

fourteen artifact patterns, a total of sixty-nitne patterns.

The training sub-set fur category two data was made up of 50%

of the sub-segmelnts from each of the training pattens - 108 cough
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sub-segments and 206 artifact sub-segments, a total of 314 sub-segments.

5.5 Machine Training and Classification Results

Training and recognition using category one data were accomplished

for four first stage 3anfigurations used in conjunction with four second stage

configurations; the Markoff-I machine was not implemented. Training and

recognition using category two data were conducted for the first stage con-

figuration chosen as a final first stage and for all five second stage

configurations. The second stage implementations were as described in

sections 4.4.1 through .4.45.

The first stage configurations utilized are listed below:

1) Parallel hyperplane imnplernentation (us described in

section 4.2.1).

2) Modified parallel hyperpjane implementation

3) Minimum distance with respect to point sets configuration

with pro-set cluster bouniaries (described in section 4.2.2)

4) Mirrirum distance with respect to point sets configuration

with buundaries determirned by an iterative algoritilin (describod

in section 4.2.2).

The first stage configuration listed as; 4) above was chosen as,;

a final first stage, for the pattern clssifiel

Training and recognition results are tabulated in Tables S-3

through 5-14. The folluwiny abbreviations were used;
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A - Artifact Class

C - Cough Class

BD-- a decision was made that the pattern belonged to

class B when in actuality it was a member of class D.

B: A,; D=A,C

The data identificdtion and measure set nomenclature previously

defined are repeated below for convenience-

Category one data recorded at Woodlawn Hospital

Category two data --- simulated coughs and artifacts

Measure set A --- the iifty measures described in Table 5-i

Measure set B the twenty-eight measures described

in the last paragraph of section 5. 3

Measure set C --- the fifty measures described in Table 5-2

Measure set D --- the first twenty-five measures described

in Table 5-2.

5. 5. 1 Preliminary Configuration Results

Tables 5-3 and 5-4 are tabluldtions of the training and pattern

classification results for the parallel hyperplane first stage configuration.

-'or reasons which were previously outlined, it was not expected that this

configuration should pe-ifur• well foi pcattem,:r not included in the training

set. The tabuhtition of the first stage--second layer decisions fur sub-

segments (excLuding the training sub-set) indicates that this was the case.
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Table 5-3

Pattern Classifier Results
Parallel Ilyperplane First Stage Implementationi

ýajtegory One Dat~a M-Veasýure Set A

Measure Saet h (50 measures category one data)
Number of First Stage Hypcrplanes -- 109

First stage - second layer decisions:

GC/C A/C c/A M
E~xcluding
Tiaining sub-set 161411 10

Training sub-seL 164 0 0 132

Total 330 114 101 241

.clc'.o:nd stage decisions: Pten

Mauhine No. Q/_C A/C C/A Aý/A Considered

110 66 1 Lxc. training set
27 3 5 2

3 .9 1 3 4
4 7 3 3 4

1 30 1 5 16 Tlialiing set
2 28 3 12 9
3 30 1 0 21
4 28 3 5 16 1

1. 40) 17 Ai i
2 35 6 17 11 1
3 39 2 3 25

4 35 68 20
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Tible5-4

Pattern Classifier Results
Paiallel ttyperplano First Stage Im!p..mentation

Category One Data -- M!a1su3e Set I

Number of First Stage ttyperplan, s -- Ili

First stage - second 'ayer decisions:

c/c A/C cZrn A/A
£Excluding
Training sub-set 200 80 109 101

Training sub-set 164 6 0 132

Total 364 80 109 233

L Second stage decisions:
P•atterns

Machine No. CC AQ CiA A/iA Considered •

1 1 0 0 6 1 Excl. Training sj:
S2 7 3 4 3

÷- 3 10 0 4 3

4 7 3 3 4

1 31 0 5 16 Training set
2 26 5 6 is

S3 31 0 a 20
4 29 2 5 16

1 41 i i 17 Al
2 33 8 10 18

3 41 u 5 23
4 36 5 8 20

Ix

I]
I_
IJ

II

I!
Ii
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Tabi,_ 5-5

Pattern Classifier Results
Modified Paiicl[,_ Ilyperplane Fist Stage Inplementation

Category One Data -- Measure Sel A

Number of First Stage Ilyperplanes-- 9

First stdge- second layer decisions:

C C /CL C/A A1/A
Excluding 204 76 118 92
Training sub-set

Training sub-set 144 20 46 86

Total 348 96 164 178

Secona stage decisions: POttrns

Machine No. C C AIC .ir_ A/A Considered

I 8 2 5 2 ExcI. training set
2 8 2 5 2
3 7 3 2 2
4 6 4 4 3

2 29 2 11 10 Training set *1
2 26 5 12 S "

3 28 3 9 12
4 28 3 6 15 I

l 3) 0 Ai! 1

2 34 7 17 V I
3 35 6 14 I 14

4 34 7 iu 18



IVI

93

Table 5-6

Plattern) Classifier Results

Modified Paiallel Hyperpl-ine First Stage Impleenntation

Category One Data -- Measure Set 13

Number of First Stage Ilyperplanes -- 9

First stage -second layer decisions:

LxldnC/C AIC C/A A/ AExcluding

Training sub-set 217 63 130 80

Training sub-set 140 24 38 94

Total 357 87 168 1 74

Second stage decisions: PPdtturns

Machine No. /L•C A/C C/A AiA Considered

1 9 1 5 2 Et-cl. training set
2 9 1 4 3
3 9 1 5 2
4 8 2 3 4

1 27 4 6 1 5 Training set
2 27 4 7 14
3 2/ 4 -1 17
4 29 2 5 16

1 36 5 1 1 17 All
2 36 5 11 17
3 36 5 2 19
4 37 4 8 2



Table 5-7

Pattern Classifier Results
Fixed Radius llyporsphore Clustering First Stage Impleieneutation

Category One. Data -- Measu:e Set A

Number of first stage prototype points:
cough - 5 Artifact C 6

First stage - second layer deci sions,.

C/C. A C__ / A/A

Ecuig178 102 C63 147
Training sub-set

Training Lsub-se;t 10 9 5545 87

Tota! 287 157 108 234

Second stage decisions: aten

Machine No. ý9ZL A/C C/A A/ýA Considered

1 9 1 4 3 Excl. training set
2 8 2 5 2
3 9 3 4
4 9 1 2 5

1 26 5 5 16 Training set
2 28 3 14 7
3 26 5 4 17
4 30 1 4 17

35 6 9 1 9 Alt
2 36 5 19 9
3 35 6 8 20

4 39 2 C, 22

LI
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Table 5-8

Pattern Classifici Results
-Fixed Radius Iiypersphoro Clustering First. Stage Implementation

Catecioly One Data -- Measure Sut B

Number of first stage prototype points:
Cough 4 Artifact -i

First stage -second layer decisions;

A/C C/ LAA
EYxcluding 190 90 48 ]52

7 Training sub-set

Traininq sub-set 75 89 40 92

Total 265 179 88 254

Second stage decisions: Patterns

Machine No. Ai C/A AiA Considered

1 10 0 4 3 Excl. Training set

2 10 0 2 5

3 10 0 4 3

4 9 1 5 2

1 25 6 8 13 Training set
2 28 3 14 7

3 25 6 8 13 "

4 28 3 3 18

1 35 6 12 16 All

2 38 3 16 12
35 6 12 16

4 37 4 8 20
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Table 5-9

Pnttern Classifier Results
Final Machine Configuration*

C~a-ýgory One Data -- Measure Set A

Number of first stage prototype points:
Cough - 18 Artifact - 13

First stage- second layei decisions:

C/C A/C C/A A/A
Lxcludingt~x ludng222 58 77 1.33 --

Training sub-set 2

Training sub-set 151 13 35 97

Total 373 71 112 230

Second stage decisions: Patterns I -

Machine No. C/C A/C C/A _ VA Considered

1 8 2 4 3 Excl. training set
2 9 1 5 2
3 7 3 4 3 "

4 8 2 2 5
5 6 4 3 4

2 30 1 5 16 Training set ii
2 29 2 15 6"
3 28 3 3 18

4 30 1 4 17

5 31 0 3 18

1 38 3 9 19 All
2 38 3 20 8 "
3 35 6 7 21 ",
4 38 3 6 22 "I

5 37 4 6 22

Fp

First stage prototype, points coniputed b)y an iterative algorithm.
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Table 5-10

Pattern Classifier Results
Final Machine Configuration

Category One Data -- Measure Set B

Number of first stage prototype points:
Cough - 16 Artifact - 15

]First stage - second layer decisions:

C12 LvAu CIA A/A
Excluding
Training sub-set 210 70 44 166

Training sub-set 137 27 Z9 103

Total 347 97 73 269

Second stage decisions: atenPatterns -

Machine No. £10- ML CZ_/A A/A Considered

1 9 1 3 4 Excl. training set
2 9 1 5 2 "

3 9 1 0 7
4 9 1 4 3
5 9 1 0 7

] 26 5 10 11 Trainrvj set
2 27 4 7 14
3 26 5 5 16 "
4 28 3 4 17

29 2 5 16

1 35 6 13 15 All
2 36 5 12 16
3 35 6 5 23
4 37 4 8 20
5 3U 3 5 23
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Table 5- I I

Pattern Classifier Results
Final Machine Configuration

Category One Data -- Measure 5et C

Number of first stage prototype ponlts:
Cough - 15 ArtJfn'-t 13

First stage - second layer decisions:

C/C A/C 3j AA
LxcludingEcuig208 72 114 96

Training sub-set 21

Training sub-set 134 30 43 89

Total 342 102 157 18:5

Second stage decisions: Patternts

Machine No. CiG C C/A A/A Considered

1 8 2 5 2 Excl. training set
2 7 3 5 2
3 8 2 4 3
4 8 2 1 6
5 8 2 4 3

1 24 7 C 13 Training set

219 12 14 7

4 23 8 3 18
s 27 4 is5

1 32 9 13 15 All
2 26 15 ]9 9
3 33 8 12 16
4 31 10 4 24
5 35 6 10 18"
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Table 5-12

Pattern Classifier Results

Final Machine Configuration

Ctegory Two Data - Measure Set B

Number of first stage prototype points:

Cough - 15 Artifact - 1 5

First stage - second layer decisions:

A/C g/'A A/A
ExclIud inrg
Exraning s247 115 205 439Training sub-sct

Training sub-set 93 15 46 i60

Total 340 ] 30 251 599

Second stage decisions: Patteins

Machine No. G A/C C/A ,/A Considcred

1 50 6 2 12 Exc. training set

2 44 12 3 11 "
3 31 25 2 12
4 46 10 1 13

5 37 19 5 9

1 50 6 2 12 Training set
2 36 20 5 9

3 37 19 2 12
4 53 3 2 12 "

5 48 8 2 12

1 100 12 4 24 lit
2 80 32 8 20

3 68 44 4 24
4 99 13 3 25
5 85 27 7 21
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Table 5-13

Pattern Classifier Results
Final Machine Configuration

Category Two Data - Measure Set C

Number of first stage prototype points:

Cough - 13 ArtiLact - 14

Pirst stage - second layer decisions:

c/c A/C C/A AA
Excluding 305 57 186 458
Training sub-set
Training sub-set 96 12 20 186

Total 401 69 206 644

Second stage decisions: Patterns

Machine No. CiC A,/C C/A LA Considered

1 51 5 1 13 Excl. training set
2 56 0 1 13

3 54 2 1 13
4 53 3 1 13
5 55 1 2 12

1 50 6 0 14 Training set
2 55 1 1 13

46 10 0 14 "

4 55 1 1 13

5 56 0 0 14

1 101 11 1 27 All

2 1]1 1 2 26
3 100 12 1 27 "

4 108 4 2 26
5 111 1 2 26

Per cCIit coiIect classifications (all d atterns):

Machin~e No. Cough Artifact Overall

1 90.1 96.4 91.4
2 99.1 92.8 97.9
3 89.3 96.4 90.7

4 96.4 92.8 95.7

5 99.1 q2.8 97.9
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Table 5-14

Pattern Classifier Results
Final Machine ConIfiguration

Category Two Data - Measure Set D

Number of first stage prototype points:
Cough - 1 5 Artifact - 1 2

First stage - second layer decisions:

C/C A/CQ CI A/A_
Excluding' xluig303 59 140 504

Training sub-set

Training sub-set 98 10 24 182

Total 401 69 1 54 686

Second stage decisions:

Machine No. C__.O/C A/L Considered

1 49 7 1 13 Excl. training sict

2 51 5 1 13
3 50 6 1 13
4 51 5 1 13
r 53 3 3 11

1 51 5 0 14 Tiaining sot
2 52 . 1 13

3 48 8 1 13
4,,06 4 0 4
5 54 2 0 14 "

1 100 12 1 27 All

2 103 9 2 26
3 90 14 2 26
4 103 9 1 27

5 107 5 3 25"
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All of the preliniinary machines investigated show a pronounced

tendency to classify artifacts as coughs, when applied to patterns not in

the training set.

Tho second stage of the pattern classiler presumes Statistical

independence of the binary input. Thait tlris asjsuniiptionl is flagrantly

violated with respectL to machines 2 anld 4 in the parallel hyperplane con-

figurat~ion isý reflcted in tire classification re-sults. It is noted that,

although measure set B3 is of lower dimrcnsronality than mieasure set A,

there is no apparent degradation of classifier performance. This can

prob~ably be(- tr aced to approxirirctoly equal numcber of hyperp)lanes im~le -,

merjitedc by tie: first stage for- both inca s:ure; j:sets

Anj overall evaluation of this configurat~ion indicatecs thadt it is

someowhat leýss thani satisfactory fori the data Wtlr wh~ich the research

cesi ibedby this dissertation is- cncerne('d.

TJables, 5-5 arnd 5bare- tabulations of the- re~sults ob)ta~ine(d for a

re-sulted inj a cell defr ned by adja-cent iyfrymiuniuia s -)cirig elte uniless

it was- occý(.upied by at 1least 1%c of thre ti airrinrgu-ey rt

It would be(- expec(tedJ tha1t classIficatioulli results: would bie degr ade~d

beOcaduse of tireý lower; dirirensiorrality of the binary vectori p~resented to

nracuhjinres 2, arid ' of the seco~nd s-tage, of the pa tternr C166-Ssicle and beccause

of tire irrc;r(2ýcjsed rimurire of errors ilr tire firs't stuCout: (-second layer decis'ionls
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which would be reflected as an increased error rate for machines I and 3.

That such was the case is apparent from a comparison of the classification

results on the tiaining set for machine 3.

Tables 5-7 and 5-8 are tabulations of the results achieved by the

preliminary machine which uses as a first stage a minimum distance}I
classifier with respect to point sets.

The prototype points are determined by assigning a trainirjg sub-

segment to an existing cluster (for which the prototype points are centroids)

it it is within a pre-specified distance from its centroid and then updating

the rnean value of the cluster. If no such cluster exists, the training sub-

segment is use(d to define a new cluster centroid. This procedure, was,

reiterated until all training sub-segments had been assigned to a cluster.

Cough and artifact training sub-segments were considered sepa:-ately. A

maximum of twenty clusters was allowed for each of the classes. If

training sub-segments existed for which clusters were not found after the

maxirsuir riumbeur of allowable clusters lad been formed, the iadius of the

I yorpcc whichi d1cfincd, th1e1 cluste bondr' wa S" T-I

fixed incorement and the process repuatud. This was continued until all

training subl-segrnlents had beon assigned to a cluster.

Unless at least seven of the artifact training sub-seyrrients or

eight of the cough sub-3egineirts fell within a cluster boundary, tOe
I[

centroid of thie cluster was deleted from the set of prtotype points . Tire

1esjuits" indicated that this r cquirement roesulted in the deletion of too many
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of the originally determined piototype points. Although improved results

could have been expectcd had a modification to the above procedure been

made, the configuration was so similar to that of the fLnal configuration

selected that only investigation of the iattei was pursued.

The estimated a priori occurrence of a c, -gh was 0.596. It was

noted that in rio case did this a priori proýbability change the decision which

would have been made had a maximum likelihcod criterion been used.

5 5 . 2 Final Machine Configuration Results

Tables 5-9 through 5-11 are tanulations of the results of machine

training and recognition on category one data. Tables 5-12 through 5-14

display the results for category two data. As previously noted, for category

two data, the machine decisions are maximum likelihood classifications.

The "minimum distance with regard to point sets" first stage configura-

tion of this machine differed from that of the machine previously discussed

only in the manner in which the prototype points were determined. As before,

a maximum of twenty each artifact and cough clusters were allowed. Prior

to tainring,these forty clusters were assigned arbitrarily valued centroids.

During training, a sub-segment was assigned to the cluster within its class

(cough or artifact) for which the distance between the sub-segment and the

cluster centroid were closest (in the Euclidian sense) compared to the other

clusters within the class. The centroid of the cluster so chosen was then

updated to include the newly assigned sub-segment.
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The distance of the cluster centroids from the or-igin were stored

in central memory. When a centroid was updated, the change in its

distance from tho origin was computed. The training sub-set was pre-

sented repeatedly until the changes in distance from the centroids of all

clusters to the origin were negligible, at whlich time first stage training

was complete. Clusters which contained less than three of the training

sub--Eegments were deleted.

A comparison of Tables 5-9 and 5-10 again indicates that the

pattern sot with the lowest dimolsionality yields a higher percentage of

correct decisionis. This is probdbly due- to the reladive number of cough

and artifact prototype points implemented by the first stage of the classi-

fier. For the noisy category one signa~s, an increase in dimensionality of

the pattern results in a greater percentage of pattern space being occupied

by cough patterns with a resultant increase, in the number of erroneous

artifact classifications.

in Tabe 5-I U it wilt be noted thot aithough the classification for

patterns excluding the training set results are quite acceptable for

Machines 3 and 5, the overall training results on the total data set

indicate that if additional pattern•s were included in the data a higher

error rate would result.

The results obtained by the use of the measuie: contained in

measure set C (which was chosejn n the basis of udtegory two data)
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for the classification of category one data are tabulated in Table 5-11.

It was not ex:pected that this set of measures would yield as high a

percentage of correct classifications as measures chosen on the basis

of category one data if the mcasure selection technique used was valid.

It will be noted that such was the case.

The same argument applies to the case for which the results are

tabulated in Table 5-12.

The training and classification results for category two data with

respect to the mcasures chose, from a consideration of category two data

are listed in Tables 5-13 and 5-14. As would normally be expected,

measure set C (fifty dimensions) yielded fewer eironeous classifications,

than did measure set D (twenty-five dimensions).

The results indicate that second stage machines two, four and five

appear to be more satisfactory than machines one and three. If the pattern

ctassifier was to be realized by real time circuitry, machine S should be

wouldu G ' C;3,Cu'uD ar i]uireu foru in lescmluecircuitr Thy.

would result in less complex circuitry., "



CHAPTER VI

CONCLUSIONS

6.1 Summary and Recommendations

A model for a pattern classifier which yields usable results has

been presented. The model circumvents the difliculties attached to esti.-

mating a conditional multi-dimensional probability function by effecting

a preli,ninary piecewise linear partition of pattern space and assigning

binary values to the resulting cells.

More satisfactory results were obtained for simulated data than

for data recorded in the hospital environment. It was postulated that this

was due to the presence of contaminating noise in the category one data.

Use of the simulated data was justifiable since a real time machine would

probably be placed in close proximity to the patient being monitored. This

would result in higher quality signals being available at the input to the

classifier.

indicate that the procedure is adequate for a preliminary selection of

measures, but that a final selection of a set of measures should be made

on an empirical basis.

The measures selected for usc by the various classifiers are satis-

factory for either real time or general purpose computer recognition. In

the latter case, however, analog pme-processing to obtain a representation

107
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of the spectral measures is app'opriate due to the disproportionate calculation

time required to compute these measures. Segmnentation and thresholding of

the signals should be implen-onted prior to digit -'ation of the data.

If the present recording procedure is continued, an effort should be

made to improve the quality of the rosulting signal.

Experimental results indicate that the assumption of Markoff-1

dependency between the data sub-segments is a reasonable hypothesis.

The configuration based on this assumption (machine number 5) may be

implementcd more simply by real time circuitry and requires fewer recog-

nition computations by a general purpose machine than other mac~hines with

comparable results. It should therefore be chosen for the realization of

the recognition process. This conclusion would not necessarily be valid

if the pattern classifier was applied to data originating froll. an experiment

other than that considered in this research.

6.2 Application Extensions

The model presented in this paper is suitable for use (with

slight modification) with numenous types of data, the primary requiiemcrnt

being that sequential segments of data from the samo class be available.

An application directly related to that described by this paper

would be the classification of coughs as hsvuig criginatud frmin a patient

suffering from irieversiblc lung damage a.3 contrasted w.ih coughs emanat-

ing from a re,'5pJratory system in which the cough causing factors are of a,

ternpoaiay or reversible nature. The physiological mel indicates that a
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difference in the audible ch:azactciistics of the coughs (arnd possibly forced

expirations) probably exists.

A study of the statistical characteristics of the measures calculated

and their relationship to the physiological model would be rewvarding,

Additionally, such a study would indicate the degree of correlation between

the various measures. If two or more measures are highly correlated sta-

tistically, only one should be used in the recognjtion piocess.

SS ho l,•lbe usd th
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